PROJECT ID: PMN06011997

SAMPLE ID: NO SAMPLE ID DAI 130

DESCRIPTOR: PESTICIDE MONITORING NETWORK

Inv 38272 approved.

IDEM

DK 12129 & DK12037 - DK 12040

Environmental Health Laboratories

110 South Hill Street South Bend, Indiana 46617 (219)233-4777 (800)332-4345 (219)233-8207 FAX

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

INDIANAPOLIS

OFFICE MEMORANDUM

DATE:

March 3, 1999

TO:

Mike Yarling

THRU:

Rob Duncan (1)

FROM:

Mitt Denney

SUBJECT:

Samples DK12129 and DK12037-DK12040

Sample Comments

I have reviewed the attached results and have determined that the results are acceptable for use. The results have been evaluated for the quality criteria contained in the Ground Water Quality Assurance Program Plan and BAA 97-044. Any qualifications for the acceptance of these results will be identified in the memorandum. This memorandum should remain attached to the original results.

Since multiple groups of sample number sets are submitted to the lab, QC discussions are grouped by the analytical run as presented in the report submitted by the lab. The sample numbers do not follow a consistent grouping across each of the methods performed.

QA/QC Samples

Enzyme Immunoassay

Enzyme immunoassay was utilized for screening chlorinated acids and carbamate class pesticides. 2,4-D and carbofuran are the target immunoassay compounds. EPA methods 515.1 (chlorinated acids) and 531.1 (carbamates) were used to analyze ten percent of samples taken and any sample with a positive immunoassay response.

Immunoassay results are reported with concentrations; however, concentration data is suitable only for qualitative purposes. Concentration data is not evaluated for QC suitability, due to the variable nature of the results.

2,4-D

QC samples correctly indicated the presence or absence of 2,4-D. 2,4-D immunoassay sample results are acceptable for qualitative evaluation.

Carbofuran

QC samples correctly indicated the presence or absence of carbofuran. Carbofuran immunoassay sample results are acceptable for qualitative evaluation.

EPA Methods

Chlorinated Acids (515.1)

Sample DK12129 was analyzed as a ten percent check sample. QC data were within acceptable parameters. Chlorinated acid data is acceptable for quantitative evaluation.

Carbamates (531.1)

Sample DK12129 was analyzed as a ten percent check sample. QC data were within acceptable parameters. Carbamate data is acceptable for quantitative evaluation.

General Pesticides (525.2)

The peak Gaussian factor was not within specifications for bromacil. The balance of QC were within acceptable parameters; therefore, bromacil data is acceptable for quantitative evaluation. Metribuzin, prometon, and simazine were low biased in the LFB. Cyanazine was low biased in the second CCC (C-1-18B). Surrogate 4 (late eluting) was high biased for sample DK12040. Sample DK12040 data is acceptable since the other surrogates, internal standards, LMB, CCC, and LFB were within acceptable parameters, with the exception of compounds listed below. LFB data for metribuzin, prometon, and simazine and CCC data (C-1-18B) for cyanazine were low biased due to degradation effects from acidified preservation; hence, data for these compounds are acceptable for qualitative evaluation only.

All other general pesticide QC data were within acceptable limits; therefore the data are acceptable for quantitative evaluation.

General Pesticides, Comments

Bench testing has demonstrated an attenuation of the concentration of cyanazine, diazinon, fenamiphos, metribuzin, prometon, and simazine with hydrochloric acid (HCL) preservation. This attenuation becomes severe within a short period of time. This will affect the determination of concentration; however, because of the sensitivity of the ion trap mass spectrometer, the detection of the presence of these parameters will not be affected for original concentrations on the order of magnitude of the maximum contaminant levels (MCL). Reviews are under way to examine data at the instrumental detection limit to see if there were any indications of these compounds. Testing of unpreserved sample duplicates (samples taken in July 1998) have not indicated any detection of a pesticide, that was not detected in a preserved sample.

110 S. Hill Street South Bend, IN 46617-2702 (219) 233-4777 (219) 233-3272 FAX (219) 233-8207

LABORATORY REPORT

Client: IDEM

Attn:

Mitt Denney

Groundwater Section
100 North Senate Avenue

P.O. Box 6015

Indianapolis, IN 46206-6015

Project: DK 12129 & DK 12037 - DK 12040

Samples Submitted: Five groundwater samples

Copies to: None

Collected: 08/11 to 08/12/98

By: Client

Received: 08/19/98

Report #: 346614-38

Status: Final

Priority: Standard Written

REPORT SUMMARY

Five groundwater samples were submitted for analysis of Task 4A, 2,4-D and Carbofuran (Enzyme Immunoassay), Pesticides (Method 525.2), Chlorinated acids (Method 515.1), and Carbamates (Method 531.1).

Note: Sample containers were provided by the client.

The following is a summary of the results by sample. Any compounds that are not part of the requested parameter list are indicated by an asterisk(*).

2,4-D Enzyme Immunoassay

None of the quality control samples in the analytical run were outside the

limits specified in the method.

DK12129 2,4-D was not detected in the sample submitted for analysis.

DK12037 2,4-D was not detected in the sample submitted for analysis.

DK12038 2,4-D was not detected in the sample submitted for analysis.

DK12039 2,4-D was not detected in the sample submitted for analysis.

DK12040 2,4-D was not detected in the sample submitted for analysis.

Carbofuran Enzyme Immunoassay

None of the quality control samples in the analytical run were outside the

limits specified in the method.

DK12129 Carbofuran was not detected in the sample submitted for analysis.

DK12037 Carbofuran was not detected in the sample submitted for analysis.

وحي

<u>6</u>2

Client: IDEM Report #: 346614-38

Carbofuran Enzyme Immunoassay (Cont.)

DK12038 Carbofuran was not detected in the sample submitted for analysis.

DK12039 Carbofuran was not detected in the sample submitted for analysis.

DK12040 Carbofuran was not detected in the sample submitted for analysis.

EPA 525.2

Bromacil did not pass the PGF criteria in the LPC, but this data is acceptable based on bromacil recoveries in the LFB and CCCs. Metribuzin and prometon recoveries in the LFB and metribuzin and cyanazine recoveries in the LFM were low biased outside the acceptance limits of 70-130% recovery. These analytes are listed in Section 13.2 of EPA Method 525.2 as "Problem Compounds." Since the samples from IDEM are collected and stored under acidic conditions, low recoveries for cyanazine and prometon may be observed in the LFBs and LFMs due to degradation and or ionization as cited in paragraphs 13.2.5 and 13.2.8 of the method. Metribuzin has been found to breakthrough the extraction disk when co-extracted with other analytes. (Section 13.2.7). Simazine recovery was low biased in the LFB, but this data is acceptable based on simazine recoveries in the CCCs. Cyanazine recovery in the second CCC was low biased outside the acceptance limits due to active sites on the injector insert from previous injections. Therefore, these results in the samples are potentially low biased. One of four surrogate standard recoveries in sample DK 12040 was low biased outside the acceptance limits due to matrix interference. This data is acceptable based on the recoveries of the other three surrogate standards. None of the other quality control samples in the analytical run were outside the limits specified in the method.

DK12129 None of the method parameters were detected in the sample submitted for

analysis.

DK12037 None of the method parameters were detected in the sample submitted for

analysis.

DK12038 None of the method parameters were detected in the sample submitted for

analysis.

DK12039 None of the method parameters were detected in the sample submitted for

analysis.

DK12040 None of the method parameters were detected in the sample submitted for

analysis.

EPA 515.1

None of the quality control samples in the analytical run were outside the

limits specified in the method.

DK12129 None of the method parameters were detected in the sample submitted for

analysis.

Client: IDEM

Report #: 346614-38

EPA 531.1

None of the quality control samples in the analytical run were outside the limits specified in the method.

DK12129

None of the method parameters were detected in the sample submitted for

analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call us at (219) 233-4777.

REVIEWED BY:

DATE: 1/24/97.

FINALIZED BY:

DATE: 11/25/98

Health Laboratories Environmental

110 S. Hill Street · South Bend, IN 46617 · Phone (219) 233-4777 · (800) 332-4345

ORDER# 33352

		FIELD COMMENTS: CARRIER				3466035 V V	HLOCAR	JH (do al	341dod0 1	346619 8/11 430	3410018 V V	346617	34100116	346615 1 1	00.1 1/18 HIDDHE	D)	FHI COLLECTION	1DE 1	CLIENT/COMPANY ORDERING TEST	SHADED AREA
LAB RESERVES THE RIGHT TO RETURN	ا ٨	RIERAIRBILL NO	Ą/P	Ą/P	A/P	\ \partial	NP	ΑγP	ΑγP	0 NO DE 12037	NP (A/P	A/P	NP	0 NO DK 12129	AE SAMPLING SHE/LABID #			EST STATE OF SAMPLE ORIGIN	SHADED AREA FOR LAB USE ONLY
LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT.	House Coc	COOLER NO.				Carbotivan (#SKy)	2 4-D CASKY)	531.1	5/5.1	525.2	Carbofuran (Assuy)	2,4-D (Assay)	531.1	2.2.7	525.7	I EST NAME	+		SAMPLER (Signature)	CHAIN OF COSTODY RECORD
S TO CLIENT.		DATE SHIPPED														SAIVIITE REIVIAKAS			PWS ID# PO#	PAGE_
,		D					2/2	4		2			<		Ž	# O MA TUR	F C(TRI)	ONTAI X COE ONUO? SE	ners De Time	OF

RELINOUISHED BY: (Signature) RELINOUISHED BY: (Signature) MATRIX CODES: DATE TIME DATE TIME RECEIVED BY: (Signature) RECEIVED FOR LABORATORY BY: 819980930 DATE | TIME DATE TIME TURN-AROUND-TIME (TAT) - SURCHARGES LAB COMMENTS (M) TEMPERATURE: SHIPPING CONDITIONS: (Check One) patient barried 515 (8531 (except 15sts) ar inve For est of the 18 55 8- 20-98 °C Lowest Viced ☐ Ambient °C Highest (j-○ Receipt

RW = REAGENT WATER

= UROUNDWATER = SURFACE WATER

SW = STANDARD (15 WORKING DAYS) WRITTEN **RV** = RUSH (5 WORKING DAYS) VERBAL **RW** = RUSH (5 WORKING DAYS) WRITTEN

0% 50% 75%

SP =

WEEKEND, HOLIDAY

IV = IMMEDIATE (72 HOURS) VERBAL IMMEDIATE (72 HOURS) WRITTEN

100% 125% Call

STAT = LESS THAN 48 HOURS

Samples received unannounced with less than 48 hours holding time remaining may be subject to additional

surcharges.

FOOL WATER WASTEWATER

CHAIN OF CUSTODY RECORD

SHADED AREA FOR LABUSE ONLY

Health Laboratories 110 S. Hill Street · South Bend, IN 46617 · Phone (219) 233-4777 · (800) 332-4345

ORDER #

PAGE

읶

	FIELD COMMENTS:				3416633	34663a	1600H	346630	3410029	34cod8	346627	34/ded6	346625	HOLOGH	LAB#	EHL	IDE M	CLIENT/COMPANY ORDERING TEST
	NTS:				4		_	_	8/12	<		<u> </u>	7	8/12	DATE	COL	2	IY ORDEF
	CARRIER				(1100 00	4				8/12 0130 NP	TIME	COLLECTION		SING TES
	R	ŊΡ	NΡ	NΡ	Ąγ	₹	Ąρ	λb	λ	₹	Ŋ	Ą	⋛	W				7
	AIRBILL NO.			•	(DK 12039	4				DK 12038		SAMPI INC SITE/I AR ID #		STATE OF SAMPLE ORIGIN
	COOLER NO.	•		,	Purbohivan (ASSA)	2 4-0 (ASM).	531.	515.1	525,2	Carbofuran (Assay)	2,4-D (Assay)	531.1	212.1	535.2		TEST NAME		SAMPLER (Signature)
	DA										-							PWS ID#
	DATE SHIPPED														_	SAMPI E PEMARKS		PO#
•				-	1	1			نج			Y	<u> </u>	ی	⊢		ONTAIN COD	-
						12.5									_		OUND	_
	ı	1					102	l i	l Ì				l .	1]	آ م ا	CTO	ט גב	,

LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT.

						1
SW = GROUNDWATER SW = SURFACE WATER WW = WASTEWATER	RW = REAGENT WATER DW = DRINKING WATER	MATRIX CODES:	,	RELINOUISHED BY: (Signature)	RELINOUISHED BY: (Signature)	
RV = [W = 0				e) DA	
HSD8	(TAND)			(TE 1	TE T	
WORK			TIME	ME		
RW = RUSH (5 WORKING DAYS) VERBAL RW = RUSH (5 WORKING DAYS) WRITTEN	SW = STANDARD (15 WORKING DAYS) WRITTEN	0	SS 38	DATE TIME RECEIVED FOR LABORATORY BY:	DATE TIME RECEIVED BY: (Signature)	
50% 75%	0 %		7)RY BY:		
S & S	₹	TURI	8-1991	DATE TIME	DATE	
=	" _	N-AR	1093	TIME	DATE TIME	
25 3	IV = IMMEDIATE (72 HOURS) VERBAL IW = IMMEDIATE (72 HOURS) WRITTEN SP = WEEKEND, HOLIDAY		8-19-980934 TEMPERATURE	SHIPPING CONDITIONS	LAB COMMENTS	
125% Call	100%	TURN-AROUND-TIME (TAT) - SURCHARGES	_°C Lowe	Check On		
ith less than 48 bject to addition	CTAT - JESS THAN 48 HOURS		st - **CHighest - **CRe	el Micred Ambient		
urs	•		ceipt			

POOL WATER

Environmental,

Laboratories 110 S. Hill Street · South Bend, IN 46617 · Phone (219) 233-4777 · (800) 332-4345

ORDER #_

MATRIX CODES: RW = REAGENT WAIER DW = DEINKING WAIER GW = GROUNDWAIER SW = SURFACE WAIER FW = POOL WAIER RW = RUS FW = POOL WAIER	RELINOUISHED BY: (Signature) DATE	RELINOUISHED BY: (Signature) DATE			FIELD COMMENTS: CARRIER	V SANDARA CO							4	× ()				346634 8/12 135TA	EHL COLLECTION LAB# DATE TIME	1DEM	CLIENT/COMPANY ORDERING TEST	SHADED AREA FOR LABUSE ONLY
STANDARD (15 WORKING DAYS) WRITTEN 0% RUSH (5 WORKING DAYS) VERBA! 50% RUSH (5 WORKING DAYS) WRITTEN 75%	TIME RECEIVED FOR LABORATORY BY:	TIME RECEIVED BY: [Signature]	LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF	*,	AIRBILL NO.	ΛÞ	Nβ	idλ	Λ Γ	NY CONTRACTOR OF THE PARTY OF T		WP The state of th	Ŋ P	₩ P	N/P	Αγρ	A/b	Ototl X(1 pm	SAMPLING SITE/LABID #		STATE OF SAMPLE ORIGIN	
TURN-AROUND-TIME (TAT) - SURCHARGES IV = IMMEDIATE [72 HOURS] VERBAL 100% IW = IMMEDIATE [72 HOURS] WRITTEN 125% SP = WEEKEND, HOLIDAY Call	B-19-980932 TEMPERATURE:	DATE TIME LAB COMMENTS		House Coc	COOLER NO.	,			Purpohiran C	2 4-0 (KBM)	33/. / X	5/5,7	325. I	opudo o	2,4-D (Assau	カルー	815.1	535.2	TEST NAME		SAMPLER (Signature)	CHAIN OF CUSTODY RECORD
	Konely Kuceo ''' ''' '''' ''''' '''''''''''''''''		NON-AQUEOUS SAMPLES TO CLIENT.						*S#Y				1	(ASSOUX) 8/K	<u>-</u> اولا						PWS ID#	
STAT = LESS THAN 48 HOURS Samples received unannounced with less than 48 hours holding time remaining may be subject to additional surcharges.	nblen Higher				DATE SHIPPED					_		3.1						 	MATRI	ONTAINE X CODE	1	PAGEOF

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

\bowtie	OWM
/ \	

OSHWM

OAM

CHAIN OF CUSTODY

certify that the	sample(s) listed belo)w was	/were	ollect	ed by 11	ne or ir	my pr	esence				Date:		8 1	18	1 98
Signature:	- 1	10	Ua	4								Section	: <u> </u>	GRO	uns W	9724
		·	$\overline{/}$	\mathcal{A}										_	. •	_
LAB NUMBER	IDEM CONTROL			Co	NSIS' JN	TING JMBE	OF TI	HE IN BOTT	DICA'	TED	Т				E AND TI OLLECTEI	
ASSIGNED	NUMBER	2000 ml P, N. M.	P, N. M.		500 ml G, W. M.	40 ml VIAL	120 ml G, (B.O.)	500 ml P, N. M.	250 ml P, N. M.	•						
	DIC 12129			12		4.						1.	8	11 98	1:00	AM(PM)
 	DK 12037			2		14.		. A					8	11/198	430	
	DK 12038			2		4	1.7.			• •		7 ***	8	12198	9.3	
	Dk 12039			2		4							8	12198	11:α	_
	DK 12040			i		4							8	1/2198	1:30	AMPH
														1 1	<u>:</u>	AM/PM
														1 1	:	AM/PM
														1 1	:	AM/PM
														/ /	:	AM/PM
			<u> </u>				<u> </u>							1 1	:	AM/PM
														1 1	<u>:</u>	AM/PM
						<u> </u>	<u></u>							/ /	:	AM/PM
Ρ-	Plastic	G - G	ālass		N.I	M Na	rrow N	louth		٧	V.M	Wide M	outh	8	.O Bacti. C	only
I certify that I re	ceived the above sar	nple(s	:).		CA	RRIE	RS.				Sh	ould sai	nples	be Iced?	YN	
	SIGNAT	rure										LS ACT		COMMENTS		
RELINQUISH	EDBY: M	1	Ye				8 1	18	198						(5	Xw
RECEIVED	Y: SER_5	200	>	18-19	1-98	093	o :	. A	M/PM		Y	(Z			<u>~~~</u>	
RELINQUISH	ED BY:	<u></u>				•	/		<u> </u>	_	Y	N				•
RECEIVED BY	Y:						:		М/РМ		<u> </u>					
RELINQUISH	ED BY:							/	<u> </u>	╝,	y	И			•	
RECEIVED B	Y:						<u>:</u>		м/РМ		•					•
RELINQUISH	ED BY:			_						╣,	,	N				
RECEIVED BY:							:	Α	м/РМ		-					
RELINQUISHED BY:							1 1			_ ,	_Y	N				
RECEIVED B	<u>Y:</u>		_				:	A	м/РМ							
laboratory person	eccived the above sa onnel at all times or ::	locked	in a se	cured	area.	ed in th		al reco	rd book							
Lab: A						Ad-	Address:									

INDIANA DEPARTMENT of ENVIRONMENTAL MANAGEMENT OFFICE OF WATER MANAGEMENT GROUND WATER SECTION

ate Sub	mitted:	8/18/98		Sample No	s Submitted Today:				
	Project:	MONITORING NETWORK	Assig	ned IDEM	Sample Nos:	DK11792 to DK11186 DK12030			
Matrix: Ground Water			1		Sampler:				
ASKS 8	VOR PA	RAMETERS TO DETERMIN							
TASK		PARAMETER		TASK		PARAMETER			
4A	PESTIC	CIDES							
4A	CHLOF	RINATED PESTICIDES							
4A	CARBAMATES								
					· ·				
_									
_									
PPROX ommen		ONCENTRATIONS: 10ppm		EPORTING	TIME REQUIR	RED: 30 DAYS			
					·	·			
		·							

Shadeland, Ground Water Section

Indianapolis, IN 46206-6015

P.O. Box 6015

2,4-D ANALYSIS RESULT SHEET

Diluent/Z	Con			# TOJ	Run Date:	Method:
Diluent/Zero Solution: 7K2778	Control Solution: 7J2566	Standard 3: Not Used	Standard 2: 7J2564	Standard 1: Not Used	: 08/20/98	Enzyme Imn
7K2778	7J2566	Not Used	7J2564	Not Used	Run Time: 11:00	Enzyme Immunoassay - Qualitative
Magnetic Particles:	Color Solution:	Washing Solution:	Stopping Solution:	Enzyme Conjugate:	Project(s): IDEM / Pesticion	Analyst: NM

: IDEM / Pesticide Monitoring Network	MM
Run ID #: 14058	Instrument ID: B&L Spectronic 21

8C1017 7,12630

Standard Warmup Time: Spectronic 21 Setting: 450

Curve Date: 07/08/98

Kit Lot: 8C1023

in use: 08/03/98

8C1016 7L3052 8B1156

21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	5	4	ω	2	1	íí
									346637	346632	346632	346632	346627	346622	346617						Lab ID &
									IDEM	IDEM	IDEM	IDEM	IDEM	IDEM	IDEM						Client
							Standard 2 (1/10 dil	Diluent/Zero	DK12040	DK12039 Matrix Spike l	DK12039 Matrix S	DK12039	DK12038	DK12037	DK12129	Control	Standard 2 (1/10 dil	Standard 2 (1/10 dil	Diluent/Zero	Diluent/Zero	Sample Description
							n) 1.0 ug/L	0.0 ug/L		Duplicate @ 7.0 ug/L	pike @ 7.0 ug/L					3.5 ug/L	n) 1.0 ug/L	n) 1.0 ug/L	0.0 ug/L	0.0 ug/L	
							CCC	LMB	FS	SW	MS	FS	FS	FS	FS	QCS	ICS	ICS	LMB	LMB	Sample Type Muse
							RW	RW	GW	G₩	GW	GW	GW	GW	GW	RW	RW	RW	RW	RW	Mark Mark
							1.002	1.098	1.319	0.739	0.771	1.224	1.211	1.218	1.263	0.830	0.997	0.976	1.078	1.072	Absortunce (11111) Bu
							93.2	102.1	122.7	68.7	71.7	113.9	112.7	113.3	117.5	77.2	92.7	90.8			Bx x 100
							0.7	< 1.0	< 1.0	5.8	4.8	< 1.0	< 1.0	< 1.0	< 1.0	2.8	0.7	0.8			Cated PPB
							Present	Absent	Absent	Present	Present	Absent	Absent	Absent	Absent	Present	Present	Present			Figure Forestift
							70			83	69					80	70	80			# 22
	21	20 21	19 19 20 20 21 21	18 18 <td< td=""><td>17 <td< td=""><td>16 17 17 18 19 20 21</td><td></td><td>Standard 2 (1/10 diln) 1.0 ug/L CCC RW 1.002 93.2 0.7 Present</td><td> Diluent/Zero 0.0 ug/L LMB RW 1.098 102.1 < 1.0 Absent </td><td> 34637 IDEM DK12040 FS GW 1.319 122.7 < 1.0 Absent </td><td>346632 IDEM DK12039 Matrix Spike Duplicate @ 7.0 ug/L MS GW 0.739 68.7 5.8 Present 346637 IDEM DK12040 FS GW 1.319 122.7 <1.0</td> Absent Email Signal Diluent/Zero 0.0 ug/L LMB RW 1.098 102.1 <1.0</td<></td> Absent Standard 2 (1/10 diln) 1.0 ug/L CCC RW 1.002 93.2 0.7 Present Branch Branch</td<>	17 17 <td< td=""><td>16 17 17 18 19 20 21</td><td></td><td>Standard 2 (1/10 diln) 1.0 ug/L CCC RW 1.002 93.2 0.7 Present</td><td> Diluent/Zero 0.0 ug/L LMB RW 1.098 102.1 < 1.0 Absent </td><td> 34637 IDEM DK12040 FS GW 1.319 122.7 < 1.0 Absent </td><td>346632 IDEM DK12039 Matrix Spike Duplicate @ 7.0 ug/L MS GW 0.739 68.7 5.8 Present 346637 IDEM DK12040 FS GW 1.319 122.7 <1.0</td> Absent Email Signal Diluent/Zero 0.0 ug/L LMB RW 1.098 102.1 <1.0</td<>	16 17 17 18 19 20 21		Standard 2 (1/10 diln) 1.0 ug/L CCC RW 1.002 93.2 0.7 Present	Diluent/Zero 0.0 ug/L LMB RW 1.098 102.1 < 1.0 Absent	34637 IDEM DK12040 FS GW 1.319 122.7 < 1.0 Absent	346632 IDEM DK12039 Matrix Spike Duplicate @ 7.0 ug/L MS GW 0.739 68.7 5.8 Present 346637 IDEM DK12040 FS GW 1.319 122.7 <1.0	346632 IDEM DK12039 Matrix Spike @ 7.0 ug/L MS GW 0.771 71.7 4.8 Present 346632 IDEM DK12039 Matrix Spike Duplicate @ 7.0 ug/L MS GW 0.739 68.7 5.8 Present 346637 IDEM DK12040 FS GW 1.319 122.7 < 1.0	34632 IDEM DK12039 FS GW 1.224 113.9 <1.0 Absent 34632 IDEM DK12039 Matrix Spike @ 7.0 ug/L MS GW 0.771 71.7 4.8 Present 34632 IDEM DK12039 Matrix Spike Duplicate @ 7.0 ug/L MS GW 0.739 68.7 5.8 Present 346637 IDEM DK12040 FS GW 1.319 122.7 <1.0	346627 IDEM DK12038 FS GW 1.211 112.7 <1.0 Absent 346632 IDEM DK12039 FS GW 1.224 113.9 <1.0	346622 IDEM DK12037 FS GW 1.218 113.3 <1.0 Absent 346627 IDEM DK12038 FS GW 1.211 112.7 <1.0	346617 IDEM DK12129 FS GW 1.263 117.5 <1.0 Absent 346622 IDEM DK12037 FS GW 1.218 113.3 <1.0	34617 IDEM DK12129 FS GW 0.830 77.2 2.8 Present 346612 IDEM DK12129 FS GW 1.263 117.5 <1.0 Absent 346622 IDEM DK12037 FS GW 1.218 113.3 <1.0 Absent 346632 IDEM DK12038 FS GW 1.211 112.7 <1.0 Absent 346632 IDEM DK12039 Marrix Spike @ 7.0 ug/L MS GW 0.771 71.7 4.8 Present 346637 IDEM DK12039 Marrix Spike Duplicate @ 7.0 ug/L MS GW 0.779 G8.7 5.8 Present 346637 IDEM DK12040 FS GW 1.319 122.7 <1.0 Absent DK12040 FS GW 1.319 122.7 <1.0 Absent DK12040 FS GW 1.319 122.7 <1.0 Absent Absent GV GV GV GV GV GV GV G	Standard 2 (1/10 diln) 1.0 ug/L ICS RW 0.997 92.7 0.7 Present	Standard 2 (1/10 diln) 1.0 ug/L ICS RW 0.976 90.8 0.8 Present	Diluent/Zero O.0 ug/L LMB RW 1.078 Standard 2 (1/10 diln) 1.0 ug/L LCS RW 0.976 9.08 0.8 Present	Diluent/Zero 0.0 ug/L LMB RW 1.072

Comments:

ENVIRONMENTAL HEALTH LABORATORIES

Page 1 of 1

CARBOFURAN ANALYSIS RESULT SHEET

22	21	20	19	18	17	16	15	14	13	12	=	10	9	∞	7	6	5	4	w	2	_		
	=											346638	346633	346628	346623	346618						140 113 #	Method: Run Date: LOT # Cor Diluent/
												IDEM	IDEM	IDEM	IDEM	IDEM						Client	ethod: Enzyme Immunoassay - Qualitative un Date: 08/25/98 Run Time: 09:00 OT# Standard 1: Not Used Standard 2: 7D1335 Standard 3: 7D1336 Control Solution: 7D1337 Diluent/Zero Solution: 7C1276
																							' '
								Standard2	Diluent/Zero	Standard2	Diluent/Zero	DK12040	DK12039	DK12038	DK12037	DK12129	Control	Standard2	Standard2	Diluent/Zero	Diluent/Zero	Sample Description	Analyst: NM Project(s): IDEM / Pesticide Monitoring Network Enzyme Conjugate: 7G2110 Stopping Solution: 7G2034 Washing Solution: 7C1229a Color Solution: 7G2117 Magnetic Particles: 7G2111
								1.0 ug/L	0.0 ug/L	1.0 ug/L	0.0 ug/L						2.0 ug/L	1.0 ug/L	1.0 ug/L	0.0 ug/L	0.0 ug/L		Pesticide Monitor ugate: 7G2110 tion: 7G2034 tion: 7C1229a 1: 7G2117 icles: 7G2111
								ccc	LMB	ccc	LMB	FS	FS	FS	FS	FS	QCS	ICS	ICS	LMB	LMB	Sample Type You	ing Net
								RW	RW	RW	RW	GW	GW	GW	GW	GW	RW	RW	RW	RW	RW	7	work
								0.373	0.797	0.395	0.782	0.851	0.855	0.825	0.886	0.833	0.328	0.461	0.401	0.869	0.870	Absortunce (sm) By	Instrument ID: Run ID #: Standard Warmup Time: Spectronic 21 Setting: Curve Date: Kit Lot: in use:
								42.9	91.7	45.4	89.9	97.9	98.3	94.9	101.9	95.8	37.7	53.0	46.1			Bx x 100	Instrument ID: B&L Spectronic 21 Run ID #: 14186 andard Warmup Time: Spectronic 21 Setting: 450 Curve Date: 05/20/98 Kit Lot: 7G2126 in use: 08/03/98
							;	1.1	< 1.0	0.95	<1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	1.5	0.62	0.9			Cased. PPB	ent ID: B&L Sp n ID #: 14186 o Time: Setting: 450 e Date: 05/20/98 it Lot: 7G2126 in use: 08/03/98
								Present	Absent	Present	Absent	Absent	Absent	Absent	Absent	Absent	Present	Present	Present			Result	ectronic 21
								110		95							75	62	90			7 .:	
																						ø	

Comments:

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED - GC/MS TUNING AND MASS CALIBRATION - Decafluorotriphenylphosphine (DFTPP)

4A

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID: unknown Acq. File:

Contract:

Task:

A090198A Data Directory: AE\090198A

Project:

BAA 97-044 IDEM / Pesticide Monitoring Network Case:

Initial Cali File: 0507F1AE n/a

Column:

Restek XTI-5 30m x 0.25mm ID

Method: 525.2

Instrument ID: GC/MS-AE

m/e	Ion Abundance Criteria	% Rel Abundance Q		Matrix	Code
51	10 to 80% of base peak	28.60		Reagent Water	RW
68	< 2% of Mass 69	0.00	Tune Date:	Surface Water	SW
70	< 2% of Mass 69	0.00	09/01/98	Drinking Water	DW
127	10 to 80% of base peak	31.44		Ground Water	GW
197	< 2% of Mass 198	0.00	Tune Time:	Waste Water	ww
198	base peak or > 50 % of mass 442	100.00	11:19	Sediment	SE
199	5 to 9% of mass 198	7.88		Soil	so
275	10 to 60% of base peak	17.42	Hours Since	Sludge	SL
365	> 1% of base peak	2.68	Last Tune	Other Solvents	os
441	Present and < mass 443	12.88		TCLP Leachate	TC
442	base peak or > 50 % of mass 198	55.08		Hazardous Waste	HW
443	15 to 24% of mass 442	17.60	Contamination Le	vels: L=Low M=Mediur	n H=High

		Data File /	Date	Time	Matrix	Contrn
	Sample No. / Sample Description	Sample ID	Analyzed	Analyzed	Code	Level
1	Tune 1	TI-DFN1	08/01/98	11:19	os	
2	SPCC	S-525A	08/01/98	11:45	os	
3	Continuing Calibration Check A	C-1-18A	08/01/98	12:29	os	
4	Laboratory Method Blank A	MB-525A	08/01/98	13:27	RW	
5	Laboratory Fortified Blank A	FB-525A	08/01/98	14:01	RW	
6	DK 12129	346614	08/01/98	14:36	GW	L
7	DK 12037	346619	08/01/98	15:11	GW	L
8	DK 12038	346624	08/01/98	15:45	GW	L
9	DK 12039	346629	08/01/98	16:20	GW_	L
10	DK 12040	346634	08/01/98	16:55	GW	L _
11	Laboratory Fortified Matrix A	FM-525A	08/01/98	18:05	DW	
12	Continuing Calibration Check B	C-1-18B	08/01/98	18:40	os	
13						
14						
15						
16						
17						
18						
19						
20						_
21	-					
22						
23						
24						

Q = A flag o	t = A flag or qualifier indicating possible cause for an out of range or failed result.							
Comments:						_	_	

Environmental Health Laboratories

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED LABORATORY PERFORMANCE CHECK

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID: unknown

Acq. File:

A090198A

Contract:

BAA 97-044

Task: 4A Data Directory:

AE\090198A

Project:

Initial Cali File:

0507F1AE

Column:

IDEM / Pesticide Monitoring Network Restek XTI-5 30m x 0.25mm ID

Case: n/a Method: 525.2

Instrument ID:

GC/MS-AE

Data File:

S-525A

LPC Soln Lot #:

112597-112597

		Conc.				
Compound	Tesi	ug/ml	Requirements	Result	Pass/Fail	Q
	Chromatographic					
Bromacil	Performance	5.0	0.80 < PGF < 1.20 (a)	0.75	Fail	*
Atrazine	Column	0.15				
Prometon	Performance	0.30	Resolution > 0.7 (b)	0.72	Pass	
	Abundance of degradation					
Endrin	to Endrin Aldehyde	2.0	< 10% endrin aldehyde	< 10 %	Pass	
	Abundance of degradation					
4,4' - DDT	to 4,4' - DDD & 4,4' - DDE		< 10% 4,4'-DDD & 4,4'-DDE	< 10 %	Pass	

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

(a) PGF - peak Gaussian factor. Calculated using the equation:

PGF =
$$\frac{1.83 \times W(1/2)}{W(1/10)}$$

where W(1/2) is the peak width at half height and W(1/10) is the peak width at tenth height.

Resolution between the two peaks as defined by the equation:

$$R = t$$

where t is the difference in elution times between the two peaks and W is the average peak width, at the baseline, of the two peaks.

Comments: * Bromacil did not the peak Gaussian factor criteria in the LPC, but this data was acceptable based on its recoveries in the LFB and the CCCs.

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED CONTINUING CALIBRATION CHECK

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

unknown

Acq. File: A090198A

Contract:

BAA 97-044

Task: 4A Data Directory: AE\090198A

Project:

IDEM / Pesticide Monitoring Network Case:

n/a

Initial Cali File: 0507F1AE

Column:

Restek XTI-5 30m x 0.25mm ID

Method: 525.2 Instrument ID: GC/MS - AE

CCC Soln Lot#: Mix 1: W980505012-073098

Mix 2:

Mix 3:

CCC Data File: C-1-18A

All concentrations are in ug/L

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	Q
Acetochlor	1.0	1.050	105.0	70 - 130	Pass	
Alachlor	1.0	0.985	98.5	70 - 130	Pass	
Atrazine	1.0	1.021	102.1	70 - 130	Pass	
Bromacil	1.0	0.724	72.4	70 - 130	Pass	
Cyanazine	1.0	0.782	78.2	70 - 130	Pass	
Diazinon	1.0	1.197	119.7	70 - 130	Pass	
Endosulfan I	1.0	1.172	117.2	70 - 130	Pass	
Endosulfan II	1.0	1.053	105.3	70 - 130	Pass	
Endosulfan sulfate	1.0	1.056	105.6	70 - 130	Pass	
Fenamiphos	1.0	0.823	82.3	70 - 130	Pass	
Metolachlor	1.0	1.011	101.1	70 - 130	Pass	
Metribuzin	1.0	0.910	91.0	70 - 130	Pass	
Pendimethalin	1.0	0.987	98.7	70 - 130	Pass	
Prometon	1.0	0.985	98.5	70 - 130	Pass	
Propachlor	1.0	0.978	97.8	70 - 130	Pass	
Simazine	1.0	0.719	71.9	70 - 130	Pass	
Terbufos	1.0	1.045	104.5	70 - 130	Pass	
Trifluralin	1.0	1.020	102.0	70 - 130	Pass	

nents:		 	
	_	 	

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED **METHOD BLANK SUMMARY**

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID:

Acq. File:

A090198A

Contract:

BAA 97-044

Task:

unknown

Data Directory: AE\090198A

Project:

Initial Cali File: 0507F1AE

Column:

IDEM / Pesticide Monitoring Network Case: Restek XTI-5 30m x 0.25mm ID

4A n/a

Instrument ID: GC/MS - AE

Blank File:

MB-525A

Method: 525.2 Ext Date: 08/24/98

Ext Method:

Solid Phase Extraction

This method blank applies to the following samples, ms, msd, blanks, standards.

		Data File /	Date	Time	Mainx	Contm.
	Sample No. / Sample Description	Sample ID	Analyzed	Analyzed	Code	Level
1	Continuing Calibration Check A	C-1-18A	08/01/98	12:29	os	
2	Laboratory Method Blank A	MB-525A	08/01/98	13:27	RW	
3	Laboratory Fortified Blank A	FB-525A	08/01/98	14:01	RW	
4	DK 12129	346614	08/01/98	14:36	GW	L
5	DK 12037	346619	08/01/98	15:11	GW	L
6	DK 12038	346624	08/01/98	15:45	GW	L
7	DK 12039	346629	08/01/98	16:20	GW	L
8	DK 12040	346634	08/01/98	16:55	GW	L
9	Laboratory Fortified Matrix A	FM-525A	08/01/98	18:05	DW	
10	Continuing Calibration Check B	C-1-18B	08/01/98	18:40	os	
11						
12						
13				_	1	
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24			-			

Comments:										
•										
•										
•										
•									_	
	_		_				_			
•										

Environmental Health Laboratories

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED DATA SHEET

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID:

unknown

Acq. File: A090198A

Contract: BAA 97-044

Task:

Data Directory: AE\090198A

4A

Project:

n/a

Initial Cali File: 0507F1AE

IDEM / Pesticide Monitoring Network Case:

Method:

Instrument ID: GC/MS - AE

Column: Matrix Code:

Restek XTI-5 30m x 0.25mm ID RW

525.2 Smpl Vol: 1000 ml

Data File/Smpl ID:

MB-525A

Date Received: n/a

Dil. Factor: 1

Date Analyzed: 09/01/98

Data File/Dupl ID:

Dupl Type:

Contm. Level:

Sample Number/Description: Laboratory Method Blank A

CAS Number	Compound		ample centration	Units
34256-82-1	Acetochlor	<	0.1	ug/L
15972-60-8	Alachlor	<	0.1	ug/L
1912-24-9	Atrazine	<	0.1	ug/L
314-40-9	Bromacil	<	0.1	ug/L
21725-46-2	Cyanazine	<	0.1	ug/L
333-41-5	Diazinon	<	0.1	ug/L
959-98-8	Endosulfan I	<	0.1	ug/L
33213-65-9	Endosulfan II	<	0.1	ug/L
1031-07-8	Endosulfan sulfate	<	0.1	ug/L
22224-92-6	Fenamiphos	<	0.1	ug/L
51218-45-2	Metolachlor	<	0.1	ug/L
21087-64-9	Metribuzin	<	0.1	ug/L
40487-42-1	Pendimethalin	<	0.1	ug/L
1610-18-0	Prometon	<	0.1	ug/L
1918-16-7	Propachlor	<	0.1	ug/L
122-34-9	Simazine	<	0.07	ug/L
13071-79-9	Terbufos	<	0.1	ug/L
1582-09-8	Trifluralin	<	0.1	ug/L

Duplicate		
Concentration	Units	Q
	_	
		•

Comments:					
	 	-			
			_	_	
			 _		

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED LABORATORY FORTIFIED BLANK

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

unknown

Acq. File: A090198A

Contract:

BAA 97-044

Task: Case:

Project:

4A

Data Directory: AE\090198A

IDEM / Pesticide Monitoring Network

n/a

Initial Cali File: 0507F1AE

Column:

Restek XTI-5 30m x 0.25mm ID

Method:

Instrument ID: GC/MS - AE

LFB Soln Lot#: Mix 1: W980505012-073098

Mix 2:

Mix 3:

LFB Data File: FB-525A

All concentrations are in ug/L

525.2

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	a
Acetochlor	1.0	1.066	106.6	70 - 130	Pass	
Alachlor	1.0	1.044	104.4	70 - 130	Pass	
Atrazine	1.0	1.008	100.8	70 - 130	Pass	
Bromacil	1.0	0.712	71.2	70 - 130	Pass	
Cyanazine	1.0	0.792	79.2	70 - 130	Pass	
Diazinon	1.0	1.001	100.1	70 - 130	Pass	
Endosulfan I	1.0	1.159	115.9	70 - 130	Pass	
Endosulfan II	1.0	1.048	104.8	70 - 130	Pass	
Endosulfan sulfate	1.0	1.071	107.1	70 - 130	Pass	
Fenamiphos	1.0	0.892	89.2	70 - 130	Pass	
Metolachlor	1.0	1.027	102.7	70 - 130	Pass	
Metribuzin	1.0	0.564	56.4	70 - 130	Fail	*
Pendimethalin	1.0	0.974	97.4	70 - 130	Pass	
Prometon	1.0	0.608	60.8	70 - 130	Fail	*
Propachlor	1.0	1.045	104.5	70 - 130	Pass	
Simazine	1.0	0.559	55.9	70 - 130	Fail	۸
Terbufos	1.0	1.009	100.9	70 - 130	Pass	
Trifluralin	1.0	0.993	99.3	70 - 130	Pass	

-	* Metribuzin and prometon are listed in Section 13.2 of EPA Method 525.2 as "Problem Compounds."							
	Since the samples from IDEM are collected and stored under acidic conditions, low recoveries for							
	prometon may be observed in the LFBs and LFMs due to degradation and or ionization as cited in							
	paragraphs 13.2.5 and 13.2.8 of the method. Metribuzin has been found to breakthrough the							
	extraction disk when co-extracted with other analytes. (Section 13.2.7).							
	^ Simazine recovery in the LFB was low biased outside the acceptance limits of 70-130% recovery,							
	but this data was acceptable based on simazine recoveries in the CCCs.							
1								

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED DATA SHEET

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID: unknown Acq. File: A090198A

Contract: BAA 97-044 Task: 4A Data Directory: AE\090198A

Project: IDEM / Pesticide Monitoring Network Case: n/a Initial Cali File: 0507F1AE

Column: Pestok XTL 5.30m x 0.25mm ID Mothod: 525.2

Column: Restek XTI-5 30m x 0.25mm ID Method: 525.2 Instrument ID: GC/MS - AE Matrix Code: GW Smpl Vol: 1000 ml Date Received: 08/19/98 Data File/Smpl ID: 346614 Dil. Factor: 1 Date Analyzed: 09/01/98

Data File/Dupl ID: Dupl Type: Contm. Level: L

Sample Number/Description: DK 12129

		S	ample	
CAS Number	Compound	Con	centration	Units
34256-82-1	Acetochlor	<	0.1	ug/L
15972-60-8	Alachlor	<	0.1	ug/L
1912-24-9	Atrazine	<	0.1	ug/L
314-40-9	Bromacil	<	0.1	ug/L
21725-46-2	Cyanazine	<	0.1	ug/L
333-41-5	Diazinon	<	0.1	ug/L
959-98-8	Endosulfan I	<	0.1	ug/L
33213-65-9	Endosulfan II	<	0.1	ug/L
1031-07-8	Endosulfan sulfate	<	0.1	ug/L
22224-92-6	Fenamiphos	<	0.1	ug/L
51218-45-2	Metolachlor	<	0.1	ug/L
21087-64-9	Metribuzin	<	0.1	ug/L
40487-42-1	Pendimethalin	<	0.1	ug/L
1610-18-0	Prometon	<	0.1	ug/L
1918-16-7	Propachlor	<	0.1	ug/L
122-34-9	Simazine	<	0.07	ug/L
13071-79-9	Terbufos	<	0.1	ug/L
1582-09-8	Trifluralin	<	0.1	ug/L

Duplicate		
Concentration	Units	Q
	:	
		_
L	L	

Comments:						
	·	_				
				_	_	
			-			
			-			

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED DATA SHEET

Tech: AT

Date: 09/10/98

A090198A Lab Name: Environmental Health Laboratories Lab ID: Acq. File: unknown Task: 4A Data Directory: AE\090198A Contract: BAA 97-044 Project: IDEM / Pesticide Monitoring Network Case: n/a Initial Cali File: 0507F1AE Column: Restek XTI-5 30m x 0.25mm ID Method: 525.2 Instrument ID: GC/MS - AE

Matrix Code: GW Smpl Vol: 1000 ml Date Received: 08/19/98
Data File/Smpl ID: 346619 Dil. Factor: 1 Date Analyzed: 09/01/98

Data File/Dupl ID: Dupl Type: Contm. Level: L

Sample Number/Description: DK 12037

			ample	
CAS Number	Compound	COR	centration	***************************************
34256-82-1	Acetochlor	<	0.1	ug/L
15972-60-8	Alachlor	<	0.1	ug/L
1912-24-9	Atrazine	<	0.1	ug/L
314-40-9	Bromacil	<	0.1	ug/L
21725-46-2	Cyanazine	<	0.1	ug/L
333-41-5	Diazinon	<	0.1	ug/L
959-98-8	Endosulfan I	<	0.1	ug/L
33213-65-9	Endosulfan II	<	0.1	ug/L
1031-07-8	Endosulfan sulfate	<	0.1	ug/L_
22224-92-6	Fenamiphos	<	0.1	ug/L
51218-45-2	Metolachlor	<	0.1	ug/L
21087-64-9	Metribuzin	<	0.1	ug/L
40487-42-1	Pendimethalin	<	0.1	ug/L
1610-18-0	Prometon	<	0.1	ug/L
1918-16-7	Propachlor	<	0.1	ug/L
122-34-9	Simazine	<	0.07	ug/L
13071-79-9	Terbufos	<	0.1	ug/L
1582-09-8	Trifluralin	<	0.1	ug/L

***************************************	***********	100000000000000000000000000000000000000
Duplicate	100000000000000000000000000000000000000	P. (1980)
1000000	100000000000000000000000000000000000000	<u> </u>
\$0000000000000000000000000000000000000	1 000000000000000000000000000000000000	B2000000000000000000000000000000000000
Concentration	pg(g)()()()()()	posterio de la companio de la compa
Canaptentian	1144	Q
PARTICIPATION:	AFRIILES:	2004000

		l — — — — — — — — — — — — — — — — — — —
l I	1 1	1
	1	1
1	(1
1	1	1
1	, 7	1
1	, 1	i e
1	, '	1
	<u> </u>	
	,	
1	,	1
1	1 1	İ
	, "	i
į.	, ,	1
1	, 1	i
<u> </u>		
1	1	1
1	1	1
1	1	1
Î.		1
1	, '	1
1		L
1	1	
1	1	1
1		
1	1	İ
1	۱ ۱	İ
L		
1		
1	, ,	I
1	į	1
I	, ,	
I	t I	1
1		!
Ī	, ,	1
i		1
L		
	1	1
I	!	1
I	1	1
I		l
I		l
I		l
		t — —
1	Į I	1
1	(I	1
1	1	1
1	,	1
i		
1	,	1
1	,	1
	$\overline{}$	├
		1
	•	Ī
1	1	1

Comments:								_	
					_				
			,						
					_	_			
		-		-					
				-			·		

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED DATA SHEET

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID:

unknown

Contract: BAA 97-044

Acq. File:

A090198A

Project:

Task:

Data Directory: AE\090198A

IDEM / Pesticide Monitoring Network Case:

4A n/a

Initial Cali File: 0507F1AE

Column:

Restek XTI-5 30m x 0.25mm ID

346624

525.2 Method:

Instrument ID: GC/MS - AE

Matrix Code:

GW

Smpl Vol: 1000 ml

Date Received: 08/19/98

Data File/Smpl ID:

Dil. Factor: 1

Date Analyzed: 09/01/98

Data File/Dupl ID:

Dupl Type:

Contm. Level: L

Sample Number/Description: DK 12038

CAS Number	Compound		ample centration	Units
34256-82-1	Acetochlor	<	0.1	ug/L
15972-60-8	Alachlor	<	0.1	ug/L
1912-24-9	Atrazine	<	0.1	ug/L
314-40-9	Bromacil	<	0.1	ug/L
21725-46-2	Cyanazine	<	0.1	ug/L
333-41-5	Diazinon	<	0.1	ug/L
959-98-8	Endosulfan I	<	0.1	ug/L
33213-65-9	Endosulfan II	<	0.1	ug/L
1031-07-8	Endosulfan sulfate	<	0.1	ug/L
22224-92-6	Fenamiphos	<	0.1	ug/L
51218-45-2	Metolachlor	<	0.1	ug/L
21087-64-9	Metribuzin	<	0.1	ug/L
40487-42-1	Pendimethalin	<	0.1	ug/L
1610-18-0	Prometon	<	0.1	ug/L
1918-16-7	Propachlor	<	0.1	ug/L
122-34-9	Simazine	<	0.07	ug/L
13071-79-9	Terbufos	<	0.1	ug/L
1582-09-8	Trifluralin	<	0.1	ug/L

	CTT-T-C	F1111111111111111111111111
Duplicate	(
L'udichie		
[000000000000]		
Concentration		
Concentration	Hinns	
1		1
		l .
1	ŀ	l
1	ŧ	1
1		
1		
	1	l
l .	1	l
	_	
1	l	1
1	1	l .
		ļ
I	i	1
1	l	i
	l	
	Ĭ	
1	1	1
1	1	ı
l		
1	1	l
	1	1
	4	
l .	l .	
ľ		
 		
1	1	1
1	l	
	1	ł .
1	1	l
L		
	I	i
	l	l
	I	i
		<u> </u>
	1	l
	i	l
	-	ļ
1	l	1
l .	l	1
1		
	1	1
1	j	i
1	1	1
1	1	i
	 	
1	1	1
1	1	I
	└	
1	I	I
1	I	I
	L	<u> </u>
		· ·
1	l	I
I	l	ľ
	<u> </u>	L

Comments:						_		
	_							
			_					
		-	 			_	 	
	_		-					
			 		_			
				-			 	

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED DATA SHEET

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID: Acq. File: A090198A unknown Task: 4A Data Directory: AE\090198A Contract: BAA 97-044 Initial Cali File: 0507F1AE Project: IDEM / Pesticide Monitoring Network Case: n/a Restek XTI-5 30m x 0.25mm ID 525.2 Instrument ID: GC/MS - AE Column: Method: GW Smpl Vol: 1000 ml Date Received: 08/19/98 Matrix Code: Date Analyzed: 09/01/98 Data File/Smpl ID: Dil. Factor: 1 346629

Data File/Dupl ID: Dupl Type: Contm. Level: L

Sample Number/Description: DK 12039

			ample	
CAS Number	Compound	Con	centration	Units
34256-82-1	Acetochlor	<	0.1	ug/L
15972-60-8	Alachlor	<	0.1	ug/L
1912-24-9	Atrazine	<	0.1	ug/L
314-40-9	Bromacil	<	0.1	ug/L
21725-46-2	Cyanazine	<	0.1	ug/L
333-41-5	Diazinon	<	0.1	ug/L
959-98-8	Endosulfan I	<	0.1	ug/L
33213-65-9	Endosulfan II	<	0.1	ug/L
1031-07-8	Endosulfan sulfate	<	0.1	ug/L
22224-92-6	Fenamiphos	<	0.1	ug/L
51218-45-2	Metolachlor	<	0.1	ug/L
21087-64-9	Metribuzin	<	0.1	ug/L
40487-42-1	Pendimethalin	<	0.1	ug/L
1610-18-0	Prometon	<	0.1	ug/L
1918-16-7	Propachlor	<	0.1	ug/L
122-34-9	Simazine	<	0.07	ug/L
13071-79-9	Terbufos	<	0.1	ug/L
1582-09-8	Trifluralin	<	0.1	ug/L

Duplicate		
i i i i i i i i i i i i i i i i i i i		
I		
Concentration		
Leoncemianon	WINES.	
	800000000000000000000000000000000000000	
		l
		l
i		1
		l
		[
		l
		ļ
		l
		l
		l
		l
I		I
I	1	ı
	-	
t	I	I
l .	I	I
t	ı	I
<u> </u>	$\overline{}$	
1	l	I
1	ı	I
		ĺ
		l
		l
1		l
		l
i		l
	i .	l
		l
		l
	-	
		l
		l
1		l
		
	l	l
	l	l
1	l	
1	I	ı
1	I	i
	↓	!
1	I	1
1	1	
1	I	ı
		t —
1	ì	ı
1	1	1
1	1	
1	I	1
1	1	ı
	——	
	1	1
[I	1
1	I	1
	 	l
1	1	1
1	1	1
I	Ì	
1	1	ı
1	1	ı
1	l	l

Q = A flag or qualifier indicating possible cause(s) for an out of r	range or failed result.
--	-------------------------

Comments:						
-						
-						
-					_	
-	 					
-						
-				_		
-			_	<u> </u>		

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED DATA SHEET

Tech: AT

A090198A

Date: 09/10/98

Lab ID: Acq. File: Lab Name: Environmental Health Laboratories unknown Task: 4A Data Directory: AE\090198A Contract: BAA 97-044

Project: IDEM / Pesticide Monitoring Network Case: n/a Initial Cali File: 0507F1AE Instrument ID: GC/MS - AE Column: Restek XTI-5 30m x 0.25mm ID Method: 525.2 Matrix Code: GW Smpl Vol: 1000 ml Date Received: 08/19/98 Data File/Smpl ID: 346634 Dil. Factor: 1 Date Analyzed: 09/01/98

Data File/Dupl ID: Dupl Type: Contm. Level: L

Sample Number/Description: DK 12040

			ample	
CAS Number	Compound	Con	centration	Units
34256-82-1	Acetochlor	<	0.1	ug/L
15972-60-8	Alachlor	<	0.1	ug/L
1912-24-9	Atrazine	<	0.1	ug/L
314-40-9	Bromacil	<	0.1	ug/L
21725-46-2	Cyanazine	<	0.1	ug/L
333-41-5	Diazinon	<	0.1	ug/L
959-98-8	Endosulfan I	<	0.1	ug/L
33213-65-9	Endosulfan II	<	0.1	ug/L
1031-07-8	Endosulfan sulfate	<	0.1	ug/L
22224-92-6	Fenamiphos	<	0.1	ug/L
51218-45-2	Metolachlor	<	0.1	ug/L
21087-64-9	Metribuzin	<	0.1	ug/L
40487-42-1	Pendimethalin	<	0.1	ug/L
1610-18-0	Prometon	<	0.1	ug/L
1918-16-7	Propachlor	<	0.1	ug/L
122-34-9	Simazine	<	0.07	ug/L
13071-79-9	Terbufos	<	0.1	ug/L
1582-09-8	Trifluralin	<	0.1	ug/L

Duplicate		
Concentration	Unite	O
-		
-		
		•

Comments:				
	-	-		_
		_		

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED LABORATORY FORTIFIED MATRIX

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

Acq. File:

A090198A

Contract:

Task:

unknown

Project:

BAA 97-044

Initial Cali File: 0507F1AE

Data Directory: AE\090198A

IDEM / Pesticide Monitoring Network Case:

n/a 515.1

4A

Instrument ID: GC/MS - AE

Column:

Restek XTI-5 30m x 0.25mm ID

Method:

LFM Soln Lot#: Mix 1: W980505012-073098

Mix 2:

Mix 3:

LFM Data File: FM-525A

Environmental Health Laboratories

All concentrations are in ug/L

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	Q
Acetochlor	1.0	0.985	98.5	70 - 130	Pass	
Alachlor	1.0	0.998	99.8	70 - 130	Pass	
Atrazine	1.0	0.963	96.3	70 - 130	Pass	
Bromacil	1.0	0.836	83.6	70 - 130	Pass	
Cyanazine	1.0	0.656	65.6	70 - 130	Fail	*
Diazinon	1.0	1.178	117.8	70 - 130	Pass	
Endosulfan I	1.0	1.180	118.0	70 - 130	Pass	
Endosulfan II	1.0	1.024	102.4	70 - 130	Pass	
Endosulfan sulfate	1.0	1.271	127.1	70 - 130	Pass	
Fenamiphos	1.0	1.037	103.7	70 - 130	Pass	
Metolachlor	1.0	1.02	102.0	70 - 130	Pass	
Metribuzin	1.0	0.574	57.4	70 - 130	Fail	*
Pendimethalin	1.0	1.014	101.4	70 - 130	Pass	
Prometon	1.0	0.715	71.5	70 - 130	Pass	
Propachlor	1.0	1.017	101.7	70 - 130	Pass	
Simazine	1.0	0.924	92.4	70 - 130	Pass	
Terbufos	1.0	0.961	96.1	70 - 130	Pass	
Trifluralin	1.0	1.022	102.2	70 - 130	Pass	

	Since the samples from IDEM are collected and stored under acidic conditions, low recoveries for					
_	cyanazine may be observed in the LFBs and LFMs due to degradation and or ionization as cited in					
	paragraphs 13.2.5 and 13.2.8 of the method. Metribuzin has been found to breakthrough the					
_	extraction disk when co-extracted with other analytes. (Section 13.2.7).					
_						
_						
_						
_						
-						
_						

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED **CONTINUING CALIBRATION CHECK**

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

Acq. File:

A090198A

Contract:

BAA 97-044

Task:

Data Directory: AE\090198A

Project:

IDEM / Pesticide Monitoring Network Case:

Initial Cali File: 0507F1AE

Column:

Restek XTI-5 30m x 0.25mm ID

Method:

Instrument ID: GC/MS - AE

CCC Soln Lot#: Mix 1: W980505012-073098

Mix 2:

Mix 3:

CCC Data File: C-1-18B

All concentrations are in ug/L

unknown

4A

n/a

525.2

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	Q
Acetochlor	1.0	0.796	79.6	70 - 130	Pass	
Alachlor	1.0	0.788	78.8	70 - 130	Pass	
Atrazine	1.0	0.771	77.1	70 - 130	Pass	
Bromacil	1.0	0.826	82.6	70 - 130	Pass	
Cyanazine	1.0	0.419	41.9	70 - 130	Fail	*
Diazinon	1.0	1.047	104.7	70 - 130	Pass	
Endosulfan I	1.0	1.068	106.8	70 - 130	Pass	
Endosulfan II	1.0	0.941	94.1	70 - 130	Pass	
Endosulfan sulfate	1.0	0.865	86.5	70 - 130	Pass	
Fenamiphos	1.0	0.762	76.2	70 - 130	Pass	
Metolachlor	1.0	0.782	78.2	70 - 130	Pass	
Metribuzin	1.0	0.719	71.9	70 - 130	Pass	
Pendimethalin	1.0	0.888	88.8	70 - 130	Pass	
Prometon	1.0	0.753	75.3	70 - 130	Pass	
Propachlor	1.0	0.722	72.2	70 - 130	Pass	
Simazine	1.0	0.820	82.0	70 - 130	Pass	
Terbufos	1.0	0.872	87.2	70 - 130	Pass	
Trifluralin	1.0	0.918	91.8	70 - 130	Pass	

Cyanazine recovery in the second CCC was low blased due to active sites on the injector insert								
from previous injections.	Therefore, cyanazine results in the samples are potentially low biased.							
	from previous injections.							

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED SURROGATE RECOVERY

525.2

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

Restek XTI-5 30m x 0.25mm ID

unknown

Acq. File:

A090198A

Contract:

BAA 97-044

Task:

4A

Data Directory: Initial Cali File:

AE\090198A 0507F1AE

Project: Column:

Case: IDEM / Pesticide Monitoring Network

Method:

n/a

Instrument ID:

GC/MS - AE

Surrogate Soln Lot #: A70800201-072798

Data File/ Surrogate Percent Recovery Total Matrix Contm. SSI Q SS2 Q SS3 Q EPA Sample No. / Sample Description Sample ID **SS4** Out Code Level Laboratory Method Blank A MB-525A 100.0 84.4 96.3 107.3 RW 0 Laboratory Fortified Blank A FB-525A 101.8 95.3 102.5 108.1 0 RW DK 12129 346614 104.9 88.6 99.0 102.1 0 GW L DK 12037 346619 108.4 99.9 106.0 GW 4 88.8 0 L DK 12038 100.4 100.3 99.1 0 GW L 5 346624 84.6 6 DK 12039 346629 101.2 83.1 94.1 95.5 0 GW L 7 DK 12040 100.5 234.6 GW 346634 92.0 89.8 1 L 8 Laboratory Fortified Matrix A FM-525A 103.0 96.2 99.2 104.9 0 DW 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Sur	roga	ites	Target Conc.	% Recovery Limits
SS1	=	2,4,5,6-Tetrachloro-m-xylene	5.0	70 - 130
SS2	=	4,4'-Dichlorobiphenyl	5.0	70 - 130
SS3	=	Pentachloronitrobenzene	5.0	70 - 130
SS4	=	Triphenyl Phosphate	5.0	70 - 130

[%] Recovery = (Calculated Concentration / Target Concentration) *100

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

Comments: * One of four surrogate standards was high biased outside the acceptance limits of 70-130% recovery due to matrix interference. This data is acceptable, however, based on the recoveries of the other three surrogate standards.

28

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED INTERNAL STANDARD AREA SUMMARY

Acq. File:

Data Directory: Initial Cali File: Instrument ID:

0507F1AE GC/MS - AE A090198A AE\090198A

> Tech: AT Date: 09/10/98

Project: Column: Contract: Lab Name: BAA 97-044 Restek XTI-5 30m x 0.25mm lD **Environmental Health Laboratories** IDEM / Pesticide Monitoring Network Case: Task: Lab ID: Method: 525.2 n⁄a **4** unknown

IS Soln Lot#: A7090314-080498

1083072	Inff Caff Lower Limit
1487889	CCC Lower Limit
2763222	CCC Upper Limit
2125555	2 Hour CCC Standard
IS1 Area	

IS! HT IS2 Area 16:34 17:04 16:04 16:01

IS2 RT	

IS2 =	isi =	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	υ ₁	4	3	2			
lS2 = n/a	S1 = Pyrene-d10												Continuing Calibration Check B	Laboratory Fortified Matrix A	DK 12040	DK 12039	DK 12038	DK 12037	DK 12129	Laboratory Fortified Blank A	Laboratory Method Blank A	Sample No. / Sample Description	
Init Cali Lower Limit: Area: Init Cali IS area - 50%;	CCC Upper / Lower Limit: Area: 12 hr CCC std IS area												C-1-18B	FM-525A	346634	346629	346624	346619	346614	FB-525A	MB-525A	Sample ID	Data File /
it: Area:	er Limit: 🖊	:											·18B	525A	634	629	624	619	614	525A	525A	¥	File/
Init Cali IS are	Area: 12 hr CC												2125555	2355199	1683151	2022630	2273449	1769519	1917465	2013300	2256055	IS1 Area	
a - 50%;	C std IS a												16:34	16:33	16:33	16:32	16:32	16:32	16:32	16:32	16:32	O E E	
RT: Init	rea +/- 3												34 4	33	33	32	32	32	22	32	32	e O	
RT: Init Cali IS RT - 30 seconds	+/- 30%; RT: 12 hr CCC std IS RT +/- 30 seconds																					IS2 Area	
) secon	IT CCC :																					O	
ďs	std IS RT +																					IS2 RT	
	+/- 30 second												SO	DW	GW	GW	GW	We	GW	RW	RW	Q Code	Xista _M
	sp																_	L	_			Level	Contin.

Comments:

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

Environmental Health Laboratories

PESTICIDES & INDUSTRIAL CHEMICALS EXTENDED INITIAL CALIBRATION

Tech: AT

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID:

unknown

4A

n/a

525.2

Acq. File: A090198A

Contract:

BAA 97-044

Task:

Project:

Data Directory: AE\090198A

IDEM / Pesticide Monitoring Network

Case:

Initial Cali File: 0507F1AE

Column:

Restek XTI-5 30m x 0.25mm ID

Method:

Instrument ID: GC/MS - AE

IC Soln Lot#: Mix 1: W980505012-050698

Mix 2:

Mix 3:

Data File / Sample ID:	1005-18A	I-01-18A	I-05-18A	I-1-18A	i-2-18A	I-5-18A	I-10-18A	I-25-18A	I-50-18A	I-100-18A				
Concentration (ug/L):	0.05	0.1	0.5	1	2	5	10	25	50	100	Avg	%	Corr	
Compound	Rf	Af	H	Rf	At	Rf	Hf	Rf	Rf	Rf	Rf	ASD	Coeff	Q
Acetochlor	0.376	0.165	0.216	0.231	0.257	0.282	0.288	0.283			0.262	23.6	1.0000	L
Alachlor	1.968	0.788	0.875	0.948	1.017	1.140	1.133	1.120			1.124	32.5	0.9999	*
Atrazine	0.505	0.201	0.283	0.307	0.339	0.338	0.314				0.327	28.0	0.9992	
Bromacil		0.353	0.296	0.521	0.662	0.787	0.752	0.768			0.591	34.5	0.9999	*
Cyanazine	0.360	0.151	0.172	0.229	0.263	0.302	0.308	0.327			0.264	28.3	0.9997	
Diazinon		0.965	0.820	0.755	0.848	0.801	0.758				0.824	9.4	0.9994	
Endosulfan I	0.493	0.179	0.180	0.215	0.196	0.227	0.215	0.208			0.239	43.5	0.9998	*
Endosulfan II		0.185	0.212	0.254	0.223	0.255	0.244	0.246			0.231	11.3	0.9999	
Endosulfan sulfate	0.406	0.172	0.149	0.183	0.177	0.205	0.193	0.187			0.209	38.9	0.9997	*
Fenamiphos	0.557	0.243	0.303	0.445	0.526	0.617	0.619	0.620			0.491	30.1	0.9999	*
Metolachlor	2.985	1.293	1.729	2.013	2.169	2.338	2.305	2.167			2.125	23.1	0.9996	
Metribuzin	0.658	0.299	0.344	0.416	0.489	0.539	0.538	0.546			0.479	24.7	1.0000	
Pendimethalin	0.588	0.340	0.369	0.419	0.448	0.470	0.466	0.460			0.445	16.8	1.0000	
Prometon		0.485	0.671	0.683	0.807	0.819	0.741				0.701	17.4	0.9984	
Propachlor	0.941	0.435	0.507	0.574	0.608	0.675	0.650	0.677			0.633	23.7	0.9999	
Simazine	0.396	0.149	0.148	0.181	0.233	0.236	0.241	0.233			0.227	34.7	0.9998	*
Terbufos		0.921	0.931	1.034	1.078	1.187	1.184	1.251			1.084	12.0	0.9998	
Trifluralin	1.058	0.697	0.709	0.772	0.788	0.956	0.911	1.044			0.867	16.7	0.9988	

Avg RF = Average response factor

Max %RSD = 30% for a linear fit

Comments:	 		
_	 		
	 		
	 •		

METHOD 525.2 Extended - BROAD SPECTRUM PESTICIDES DETERMINATION OF METHOD DETECTION LIMITS

Tech: RD Date: 05/02/98

Project: Column: Contract: Lab Name: **Environmental Health Laboratories** Routine MDL

Restek XTI-5 30m x 0.25mm ID

Matrix Code:

Lab ID: Task: n⁄a Unknown

Acq. File: Data Directory: AE\032598A A032598A

Initial Cali Data: 0220F0AE

Instrument ID:

Method: 525.2C

Case:

ī√a

GC/MS - AE

And Part Date 03/25/98 03/25/98 03/26/98 03/26/98 03/26/98 03/27/98 03/27/98 03/27/98 Data File* M-01-01A M-01-01B M-01-01C M-01-01D M-01-01E M-01-01F M-01-01G

_				00.10	00.00	99.1	-	1	00.11	00:11:00			
						Obse	served Recovery	Ą			Std	Calc	
Method	CAS#	Parameter	Target	Rep · 1	Rep - 2	Rep - 3	Rep - 4	Rep-5	Sep-6	Rep · 7	8	HCH.	Unite
525.2	34256-82-1	Acetochlor	0.1	0.097	0.111	0.096	0.086	0.103	0.104	0.099	0.0078	0.025	ug/L
525.2	15972-60-8	Alachlor	0.1	0.124	0.119	0.128	0.120	0.129	0.121	0.127	0.0041	0.013	ug/L
525.2	1912-24-9	Atrazine	0.1	0.101	0.098	0.110	0.097	0.101	0.105	0.103	0.0044	0.014	ug/L
525.2	314-40-9	Bromacil	0.1	0.216	0.223	0.208	0.211	0.205	0.222	0.216	0.0068	0.021	ug/L
525.2	21725-46-2	21725-46-2 Cyanazine	0.1	0.108	0.121	0.096	0.109	0.108	0.110	0.109	0.0073	0.023	ug/L
525.2	333-41-5	Diazinon	0.1	0.289	0.278	0.283	0.286	0.282	0.265	0.252	0.0133	0.042	ug/L
525.2	959-98-8	Endosulfan I	0.1	0.142	0.142	0.123	0.140	0.129	0.130	0.130	0.0075	0.024	ug/L
525.2	33213-65-9	Endosulfan II	0.1	0.104	0.119	0.090	0.129	0.086	0.100	0.094	0.0157	0.049	ug/L
525.2	1031-07-8	Endosulfan Sulfate	0.1	0.096	0.097	0.095	0.110	0.099	0.092	0.128	0.0126	0.040	ug/L
525.2	22224-92-6	Fenamiphos	0.1	0.108	0.118	0.129	0.122	0.127	0.116	0.118	0.0071	0.022	ug/L
525.2	51218-45-2	Metolachlor	0.1	0.122	0.118	0.125	0.122	0.120	0.126	0.126	0.0031	0.010	ug/L
525.2	21087-64-9	Metribuzin	0.1	0.093	0.091	0.096	0.091	0.099	0.095	0.093	0.0029	0.009	ug/L
525.2	40487-42-1	Pendimethalin	0.1	0.095	0.099	0.096	0.102	0.103	0.096	0.094	0.0035	0.011	ug/L
525.2	1610-18-0	Prometon	0.1	0.084	0.069	0.068	0.070	0.057	0.046	0.066	0.0118	0.037	ug/L
525.2	1918-16-7	Propachlor	0.1	0.119	0.106	0.119	0.103	0.117	0.119	0.119	0.0070	0.022	ug/L
525.2	122-34-9	Simazine	0.1	0.122	0.113	0.103	0.096	0.102	0.109	0.111	0.0085	0.027	ug/L
525.2	13071-79-9	Terbufos	0.1	0.117	0.103	0.128	0.097	0.132	0.126	0.126	0.0135	0.042	ug/L
525.2	1582-09-8	Trifluralin	0.1	0.139	0.138	0.140	0.129	0.134	0.143	0.145	0.0054	0.017	ug/L

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

Comments

ı	
·	
	•

CHLORINATED ACID PESTICIDES - GC/MS TUNING AND MASS CALIBRATION - Decafluorotriphenylphosphine (DFTPP)

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories Lab ID: unknown Acq. File: A082698A Contract: Task: 4A Data Directory: N\082698A BAA 97-044 Project: IDEM / Pesticide Monitoring Network Case: n/a Initial Cali File: 0807F0N Column: Restek XTI-5 30m x 0.25mm ID Method: 515.1 Instrument ID: GC/MS-N

m/e	Ion Abundance Criteria	% Rel Abundance	2	Matrix	Code
51	10 to 80% of base peak	37.62		Reagent Water	RW
68	< 2% of Mass 69	0.00	Tune Date:	Surface Water	sw
70	< 2% of Mass 69	0.00	08/26/98	Drinking Water	DW
127	10 to 80% of base peak	32.54		Ground Water	GW
197	< 2% of Mass 198	0.00	Tune Time:	Waste Water	ww
198	base peak or > 50 % of mass 442	100.00	12:26	Sediment	SE
199	5 to 9% of mass 198	8.70		Soil	SO
275	10 to 60% of base peak	22.46	Hours Since	Sludge	SL
365	> 1% of base peak	3.82	Last Tune	Other Solvents	os
441	Present and < mass 443	14.05		TCLP Leachate	TC
442	base peak or > 50 % of mass 198	67.52		Hazardous Waste	HW
443	15 to 24% of mass 442	19.90	Contamination Le	evels: L=Low M=Mediur	n H=High

***************************************			***************************************		150000000000000000000000000000000000000	
		Data File /	Date	Time	Mairix	Contm.
	Sample No. / Sample Description	Sample ID	Analyzed	Analyzed	Code	Level
_1	Tune1	TI-DFN1	08/26/98	12:26	os	
2	SPCC	S-515A	08/26/98	12:47	os	
3	Continuing Calibration Check A	C-5-06A	08/26/98	13:10	os	
4	Laboratory Method Blank A	MB-515A	08/26/98	13:54	RW	
5	Laboratory Fortified Blank A	FB-515A	08/26/98	14:17	RW	
6	DK 12129	346615	08/26/98	21:00	GW	L
7	QCS A	Q-515A	08/26/98	21:23	RW	
8	Continuing Calibration Check B	C-1-06B	08/26/98	21:45	os	
9						
10						
11						
12			_			
13						
14						
15			_	_		
16						
17						
18						
19						
20						
21						
22						
23						
24						

Q = A flag or	r qualifier ind	dicating possi	ible cause for a	an out of ra			
Comments:							
-						-	
·			_				
-							

Environmental Health Laboratories

CHLORINATED ACID PESTICIDES LABORATORY PERFORMANCE CHECK

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories

Lab ID: unknown

Acg. File:

A082698A

Contract:

BAA 97-044

Task: 4A

Data Directory:

N\082698A

Project:

IDEM / Pesticide Monitoring Network

Case: n/a

Initial Cali File:

0807F0N

Column:

Data File:

Restek XTI-5 30m x 0.25mm ID S-515A

Method: 515.1

Instrument ID:

GC/MS-N

LPC Soln Lot #: 021798-021798

		Cone				
Compound	Test	ug/mi		Result	Pass/Fail	Q
Dinoseb	Sensitivity	0.05	Detection of analyte: S/N > 3	5.0	Pass	
	Chromatographic					
4 - Nitrophenol	Performance	5.00	0.70 < PGF < 1.05 (a)	0.70	Pass	
4 - Nitrophenol	Column	0.15				
3,5-Dichlorobenzoic acid	Performance	0.30	Resolution > 0.40 (b)	0.63	Pass	

- Q = A flag or qualifier indicating possible cause for an out of range or failed result.
- (a) PGF peak Gaussian factor. Calculated using the equation:

where W(1/2) is the peak width at half height and W(1/10) is the peak width at tenth height.

(b) Resolution between the two peaks as defined by the equation:

$$R = t$$

where t is the difference in elution times between the two peaks and W is the average peak width, at the baseline, of the two peaks.

Comments:							
•							
,							
•				 			
,	•	-	 	 			

Environmental Health Laboratories

Project:

CHLORINATED ACID PESTICIDES CONTINUING CALIBRATION CHECK

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories Lab ID:

Contract: BAA 97-044

IDEM / Pesticide Monitoring Network

Column: Restek XTI-5 30m x 0.25mm ID

CCC Soln Lot#: Mix 1: P8129C-082498

CCC Data File: C-5-06A

Environmental Health Laboratories

unknown

Task:

Case:

Mix 2:

4A

n/a Method:

515.1

Acq. File:

A082698A

Data Directory: N\082698A

Initial Cali File: 0807F0N

Instrument ID: GC/MS - N

Mix 3:

All concentrations are in ug/L

	Target	Observed	Percent	Acceptance	
Compound	Conc	Conc	Recovery	Limits	P/F Q
Acifluorfen	5.0	5.327	106.5	70 - 130	Pass
Bentazon	5.0	4.659	93.2	70 - 130	Pass
2,4-D	5.0	4.668	93.4	70 - 130	Pass
2,4-DB	5.0	5.499	110.0	70 - 130	Pass
Dicamba	5.0	5.538	110.8	70 - 130	Pass
MCPA	5.0	4.286	85.7	70 - 130	Pass
Mecoprop	5.0	4.310	86.2	70 - 130	Pass
Picloram	5.0	4.864	97.3	70 - 130	Pass

 omments:

CHLORINATED ACID PESTICIDES **METHOD BLANK SUMMARY**

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories Lab ID:

Contract:

Acq. File:

A082698A

Project:

BAA 97-044 IDEM / Pesticide Monitoring Network Case:

Task:

Initial Cali File: 0807F0N

Data Directory: N\082698A

Column:

Restek XTI-5 30m x 0.25mm ID

n/a

4A

unknown

Instrument ID: GC/MS - N

Blank File:

MB-515A

Method: 515.1 Ext Date: 08/24/98

Ext Method:

Solid Phase Extraction

This method blank applies to the following samples, ms, msd, blanks, standards.

		Data File /	Date	Time	Matrix	Contm.
	Sample No. / Sample Description	Sample ID	Analyzed	Analyzed	Code	Level
_ 1	Continuing Calibration Check A	C-5-06A	08/26/98	13:10	OS	
2	Laboratory Method Blank A	MB-515A	08/26/98	13:54	RW	
3	Laboratory Fortified Blank A	FB-515A	08/26/98	14:17	RW	·
4	DK 12129	346615	08/26/98	21:00	GW	L
5	QCS A	Q-515A	08/26/98	21:23	RW	
6	Continuing Calibration Check B	C-1-06B	08/26/98	21:45	OS	
7						
8						
9						
10						
11						
12						
13						
14						, , , , , , , , , , , , , , , , , , ,
15						
16						
17					-	
18						
19						
20						
21						
22						
23						
24		<u> </u>			_	
25						
26					_	
27						
28						

Comments:				 			
		_					
	-		_		_	 	

Environmental Health Laboratories

Page	1	of	

CHLORINATED ACID PESTICIDES DATA SHEET

Tech: CW Date: 08/27/98

Lab Name: Environmental Health Laboratories

Lab ID:

unknown Acq. File:

Contract: BAA 97-044

Task:

A082698A

Project:

4A n/a Data Directory: N\082698A

Column:

IDEM / Pesticide Monitoring Network Case: Restek XTI-5 30m x 0.25mm ID

Method:

Instrument ID: GC/MS - N

Initial Cali File: 0807F0N

Matrix Code:

RW

515.1 Smpl Vol: 500 ml

Data File/Smpl ID:

MB-515A

Dil. Factor: 2

Date Received: n/a

Date Analyzed: 08/26/98

Data File/Dupl ID:

Dupl Type:

Contm. Level:

Sample Number/Description: Laboratory Method Blank A

		5	ample	
CAS Number	Compound	Con	centration	Units
50594-66-6	Acifluorfen	٧	0.1	ug/L
25057-89-0	Bentazon	٧	0.1	ug/L
94-75-7	2,4-D	<	0.1	ug/L
94-82-6	2,4-DB	٧	0.1	ug/L
1918-00-9	Dicamba	'	0.1	ug/L
94-74-6	MCPA	٧	0.1	ug/L
7085-19-0	Mecoprop	٧	0.1	ug/L
1918-02-1	Picloram	<	0.1	ug/L

Duplicate		
Concentration	Units	Q
	l .	

Q = A flag or qualifier indicating possible cause(s) for an out of range or failed result.	

Comments:	 						
			-	•	_		
						_	
			-				
			-				

Environmental Health Laboratories

Project:

Column:

CHLORINATED ACID PESTICIDES LABORATORY FORTIFIED BLANK

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories Lab ID:

Contract: BAA 97-044

IDEM / Pesticide Monitoring Network

Restek XTI-5 30m x 0.25mm ID

LFB Soln Lot#: Mix 1: P8129C-082498

LFB Data File: FB-515A

Environmental Health Laboratories

ab ID: unknown

4A

n/a

Method: 515.1

Mix 2:

Task:

Case:

Acq. File: A082698A

Data Directory: N\082698A Initial Cali File: 0807F0N

Instrument ID: GC/MS - N

Mix 3:

All concentrations are in ug/L

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	Q
Acifluorfen	10.0	8.944	89.4	70 - 130	Pass	
Bentazon	10.0	7.445	74.5	70 - 130	Pass	
2,4-D	10.0	9.006	90.1	70 - 130	Pass	
2,4-DB	10.0	7.896	79.0	70 - 130	Pass	
Dicamba	10.0	10.203	102.0	70 - 130	Pass	
MCPA	10.0	8.067	80.7	70 - 130	Pass	
Mecoprop	10.0	7.864	78.6	70 - 130	Pass	
Picloram	10.0	8.266	82.7	70 - 130	Pass	

nts:					
				_	
	<u>—</u>	_	 		
			<u> </u>		
				<u>-</u>	

CHLORINATED ACID PESTICIDES DATA SHEET

Tech: CW Date: 08/27/98

Lab Name: Environmental Health Laboratories

346615

Lab ID:

Acq. File: unknown

Contract: BAA 97-044

Task:

4A

A082698A

Project:

Data Directory: N\082698A

IDEM / Pesticide Monitoring Network Case:

n/a

Initial Cali File: 0807F0N

Column:

Restek XTI-5 30m x 0.25mm ID

Method: 515.1 Instrument ID: GC/MS - N

Matrix Code:

GW

Smpl Vol: 500 ml

Date Received: 08/19/98

Data File/Smpl ID:

Dil. Factor: 2

Date Analyzed: 08/26/98

Data File/Dupl ID:

Dupl Type:

Sample Number/Description:

Environmental Health Laboratories

DK 12129

Contm. Level: L

		5	ample	
CAS Number	Compound	Con	centration	Units
50594-66-6	Acifluorfen	٧	0.1	ug/L
25057-89-0	Bentazon	<	0.1	ug/L
94-75-7	2,4-D	<	0.1	ug/L
94-82-6	2,4-DB	<	0.1	ug/L
1918-00-9	Dicamba	<	0.1	ug/L
94-74-6	МСРА	<	0.1	ug/L
7085-19-0	Mecoprop	<	0.1	ug/L
1918-02-1	Picloram	<	0.1	ug/L

Duplicate		
Concentration	Units	Q

nag or quam	or maleating p	ossible cause(s)	y for all out of the	ango or lanou i	oodit.	
nents:						
		-				

CHLORINATED ACID PESTICIDES QUALITY CONTROL SAMPLE

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories Lab ID:

unknown

Contract:

Task:

4A

515.1

n/a

Acq. File:

A082698A

Project:

BAA 97-044

Data Directory: N\082698A

Column:

IDEM / Pesticide Monitoring Network

Case: Method:

Instrument ID: GC/MS - N

Initial Cali File: 0807F0N

Restek XTI-5 30m x 0.25mm ID QCS Soln Lot#: Mix 1: Q1207-080498

Mix 2:

Mix 3:

QCS Data File: Q-515A

Environmental Health Laboratories

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	Q
Acifluorfen	2.0	1.512	75.6	70 - 130	Pass	
Bentazon	2.0	1.502	75.1	70 - 130	Pass	
2,4-D	2.0	1.907	95.4	70 - 130	Pass	
2,4-DB	2.0	1.625	81.3	70 - 130	Pass	
Dicamba	2.0	1.582	79.1	70 - 130	Pass	
MCPA	2.0	1.465	73.3	70 - 130	Pass	
Mecoprop	2.0	1.797	89.9	70 - 130	Pass	
Picloram	2.0	1.429	71.5	70 - 130	Pass	

-	
-	

Project:

Column:

CHLORINATED ACID PESTICIDES CONTINUING CALIBRATION CHECK

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories Lab ID:

Contract: BAA 97-044

IDEM / Pesticide Monitoring Network Restek XTI-5 30m x 0.25mm ID

CCC Soln Lot#: Mix 1: P8129C-082498

CCC Data File: C-1-06B

Environmental Health Laboratories

ab ID: unknown

Task: 4A

Case: n/a Method: 515.1

Mix 2:

Acq. File:

A082698A

Data Directory: N\082698A

Initial Cali File: 0807F0N

Instrument ID: GC/MS - N

Mix 3:

	Target	Observed	Percent	Acceptance	
Compound	Conc	Conc	Recovery	Limits	P/F Q
Acifluorfen	1.0	0.992	99.2	70 - 130	Pass
Bentazon	1.0	1.042	104.2	70 - 130	Pass
2,4-D	1.0	0.911	91.1	70 - 130	Pass
2,4-DB	1.0	0.944	94.4	70 - 130	Pass
Dicamba	1.0	0.984	98.4	70 - 130	Pass
MCPA	1.0	0.899	89.9	70 - 130	Pass
Mecoprop	1.0	0.959	95.9	70 - 130	Pass
Picloram	1.0	0.957	95.7	70 - 130	Pass

Q = A flag	or qualifier ind	dicating possib	le cause(s)	for an out of	range or fa	ailed result		
Comments	:							
						_		
						<u> </u>		
		_						
			_					
			-				 	
						_	 <u> </u>	
		-					 	

CHLORINATED ACID PESTICIDES SURROGATE RECOVERY

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories

Lab ID:

unknown

Acq. File: A082698A

Contract: BAA 97-044

Task:

4A

Data Directory: N\082698A

Project:

IDEM / Pesticide Monitoring Network Case:

n/a

Initial Cali File: 0807F0N

Column:

Restek XTI-5 30m x 0.25mm ID

Method: 515.1 Instrument ID: GC/MS - N

Surrogate Soln Lot #: A7120222-081998

	€PA Sample No. / Sample Description	Data File/ Sample ID			nt F Q	lecovery SS3		***************************************	Matrix Code	Contro. Level
1	Laboratory Method Blank A	MB-515A	91.2					0	RW	
2	Laboratory Fortified Blank A	FB-515A	86.0					0	RW	
3	DK 12129	346615	89.7					0	GW	L
4	QCS A	Q-515A	77.6	_				0	RW	
5										
_6			,					_		
7_										
8										
9										
10										
11										
12										j
13										<u> </u>
14										-
15										-
16										
17										
18										
19						_				
20						_				
22			-							
23							_			
24										
25										
26										
27										
28									_	
ا کا		_					.			

Suri	rogates	Target Conc.	% Recovery Limits
SS1	= 2,4-Dichlorophenylacetic Acid	10.0	70 - 130
SS2	= n/a		
SS3	= n/a		

0/_	Recovery -	(Calculated	Concentration .	/ Taraat (Concentration)	. * 1 A

Environmental Health Laboratories

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

Comments:				

Tech: CW Date: 08/27/98

CHLORINATED ACID PESTICIDES INITIAL CALIBRATION

Tech: CW

Date: 08/27/98

Lab Name: Environmental Health Laboratories

Lab ID: unknown

Acq. File:

A082698A

Contract: BAA 97-044

Task:

Project:

4A

Data Directory: N\082698A

Column:

Restek XTI-5 30m x 0.25mm ID

IDEM / Pesticide Monitoring Network

Case: n/a Method: 515.1 Initial Cali File: 0807F0N Instrument ID: GC/MS-N

IC Soln Lot#: Mix 1: P7038C-080498

Mix 2:

Mix 3:

Data File / Sample ID:	I-01-06A	I-05-06A	I-1-06A	I-2-06A	I-5-06A	I-10-06A	I-25-06A				
Concentration:	0.1 ug/L	0.5 ug/L	1 ug/L	2 ug/L	5 ug/L	10 ug/L	25 ug/L	Avg	%	Corr	
Compound	Rf	Rf	Rf	Rf	Rf	Ri	Rf	RI	RSD	Coeff	Q
Acifluorfen	3.041	2.542	3.253	2.874	2.895	2.609	2.528	2.820	9.7	1.000	
Bentazon	8.833	10.808	10.194	10.951	10.243			10.206	8.2	1.000	
2,4-D	2.958	3.808	3.698	3.975	4.088	3.779	4.349	3.808	11.4	0.999	
2,4-DB	6.406	8.482	7.305	8.495	7.851	6.882	8.092	7.645	10.5	0.998	
Dicamba	6.095	6.735	5.984	6.506	6.299	4.875	5.468	5.995	10.6	0.998	
MCPA	2.045	2.484	2.459	2.482	2.890	2.670	3.014	2.578	12.4	0.999	
Mecoprop	1.320	1.903	1.796	2.143	2.366	2.486	3.239	2.179	27.9	0.996	*
Picloram	3.067	5.311	5.225	5.763	5.417			4.957	21.7	0.999	*

Avg RF = Average response factor

Max %RSD = 20% for a linear fit

Environmental Health Laboratories

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

omments:	 	 	
	 	 <u> </u>	

Page	
_	
으	
_	

METHOD 515.1 - CHLORINATED ACID PESTICIDES DETERMINATION OF METHOD DETECTION LIMITS

Tech: CAW

Date: 01/07/98

Extraction Technique: Column: Project: Lab Name: HSE. **Environmental Health Laboratories** Restek XTI-5 30m x 0.25um ID Routine MDL Extract. Vol: 500 mL

Matrix Code:

R₩

Method: LSE Matrix: RPS Cartridge: 515.1 N N

Extraction Tech: JH Data Directory: N\010798A Acq. File: Instrument ID: GC/MS - N Initial Cali Data: 1231E0N A010798A

515.1 7085-19-0 MCPP (Mecoprop)		515.1 94-74-6 MCPA	515.1 1918-00-9 Dicamba	515.1 94-82-6 2,4-DB	515.1 94-75-7 2,4-D	515.1 25057-89-0 Bentazone	515.1 50594-66-6 Acifluorfen	Method CAS# Parameter		An	
0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Target		Analysis Date 01/07/98 01/07/98	Data File
0 238	0.525	0.452	0.296	0.359	0.242	0.156	0.279	Rep - 1		01/07/98	M-02-06A
0.241	0.523	0.446	0.289	0.346	0.205	0.162	0.265	Rep-2			Data File M-02-06A M-02-06B
0.228	0.527	0.447	0.290	0.377	0.277	0.183	0.249	Rep-3	Observed	01/07/98	M-02-06C
0.238	0.533	0.461	0.298	0.360	0.219	0.168	0.290	Rep - 4	l Recovery (ug/L)	01/07/98	M-02-06D
0.251	0.522	0.441	0.281	0.348	0.260	0.175	0.248	Rep5 Rep6 Rep7 Deviation MDL	/ (ug/L)	01/07/98 01/07/98 01/07/98 01/07/98	и-02-06D M-02-06E M-02-06F M-02-06G
0.228	0.529	0.452	0.273	0.350	0.210	0.181	0.268	Rep - 6		01/07/98	M-02-06FI
0.240	0.531	0.462	0.290	0.347	0.244	0.166	0.265	Rep - 7		01/07/98	M-02-06G
800.0	0.004	0.008	0.009	0.011	0.027	0.010	0.015	Deviation	SId.		
0.025	0.013	0.024	0.027	0.035	0.084	0.031	0.047	MOL	Calc		
J/gn	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units			

LSE = Liquid / solid extraction; LLE = Liquid / Liquid extraction Q = A flag or qualifier indicating possible cause for an out of range or failed result.

LSE Matrix = C8, C18, SDVB, Biorex-5, AG-1X-8, RPS

Comments:

CARBAMATE PESTICIDES METHOD BLANK SUMMARY

Tech: CM

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

unknown

Acq. File:

Contract:

BAA 97-044

Task: 4A

A090598

Project:

IDEM / Pesticide Monitoring Network Case: n/a Initial Cali File: Q\A090598

Data Directory: Q\A090598

Column:

Supelcosil LC-18-DB 15cm x 4.6mm Method: 531.1

Instrument ID:

HPLC - Q

Blank File:

Q0905010

Ext Date: 09/05/98

Ext Method:

Filtration

This method blank applies to the following samples, ms. msd. blanks, standards.

****	method blank applies to the following samples, ms, msc	Data File /	Date	Time	Mainx	Contm.
	Sample No. / Sample Description	Sample ID	Analyzed	Analyzed	Code	Level
1	Laboratory Performance Check	Q0905002	09/05/98	15:28	RW	
2	Continuing Calibration Check	Q0905008	09/05/98	19:06	RW	
3	Laboratory Fortified Blank	Q0905009	09/05/98	19:42	RW	
4	Laboratory Method Blank	Q0905010	09/05/98	20:19	RW	
5	DK 12129 / EHL 346616	Q0905011	09/05/98	20:55	GW	L
6	Quality Control Sample	Q0905040	09/06/98	14:28	RW	
7						
8		-				
9						
10						
11						
12						
13						
14						
15						
16			<u> </u>			
17						
18						
19						
20						
21						
22						
23						
24						

Comments:							
•							
,							
	 			_	_		
,				 _		-	
		-	-				

CARBAMATE PESTICIDES LABORATORY PERFORMANCE CHECK

Tech: CM

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID: unknown

Acq. File:

A090598

Contract:

Task: 4A Data Directory:

Project:

BAA 97-044

Case:

Initial Cali File:

Q\A090598

Column:

IDEM / Pesticide Monitoring Network

n/a Supelcosil LC-18-DB 15cm x 4.6mm ID Method: 531.1

Instrument ID:

Q\A090598 HPLC - Q

Data File:

Q0905002

LPC Soln Lot #:

H-0149-072798

		Conc.				
Compound	Test	ug/ml	Requirements	Result	Pass/Fail	Q
3-Hydroxycarbofuran	Sensitivity	2.0	Detection of analyte: S/N > 3	> 3	Pass	
	Chromatographic					
Aldicarb Sulfoxide	Performance	100	0.90 < PGF < 1.10 (a)	0.939	Pass	
Methiocarb		20				
4-Bromo-3,5-dimethyl phenyl	Column					
N-methylcarbamate	Performance	10	Resolution > 1.0 (b)	1.15	Pass	

- Q = A flag or qualifier indicating possible cause for an out of range or failed result.
- (a) PGF peak Gaussian factor. Calculated using the equation:

PGF =
$$\frac{1.83 \times W(1/2)}{W(1/10)}$$

where W(1/2) is the peak width at half height and W(1/10) is the peak width at tenth height.

(b) Resolution between the two peaks as defined by the equation:

$$R = \frac{t}{w}$$

where t is the difference in elution times between the two peaks and W is the average peak width, at the baseline, of the two peaks.

Comments:					
-					
-	 -		 		
-					
-	 	 	 	 	

CARBAMATE PESTICIDES CONTINUING CALIBRATION CHECK

Tech: CM

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

Acq. File:

A090598

Contract:

BAA 97-044

Task:

unknown

Project:

Case:

Initial Cali File: Q\A090598

Data Directory: Q\A090598

Column:

IDEM / Pesticide Monitoring Network Supelcosil LC-18-DB 15cm x 4.6mm Method:

4A n/a 531.1

Instrument ID: HPLC - Q

CCC Soln Lot#: Mix 1: L-0804-090598

Mix 2:

Mix 3:

CCC Data File: Q0905008

Environmental Health Laboratories

Target	Observed	Percent	Acceptance		
Conc	Conc	Recovery	Limits	P/F	Q
1.0	1.017	101.7	80 - 120	Pass	
1.0	1.095	109.5	80 - 120	Pass	
1.0	1.191	119.1	80 - 120	Pass	
1.0	1.078	107.8	80 - 120	Pass	
1.0	1.063	106.3	80 - 120	Pass	
-					
	1.0 1.0 1.0 1.0	Conc Conc 1.0 1.017 1.0 1.095 1.0 1.191 1.0 1.078	Conc Conc Recovery 1.0 1.017 101.7 1.0 1.095 109.5 1.0 1.191 119.1 1.0 1.078 107.8	Conc Gone Recovery Limits 1.0 1.017 101.7 80 - 120 1.0 1.095 109.5 80 - 120 1.0 1.191 119.1 80 - 120 1.0 1.078 107.8 80 - 120	Conc Conc Recovery Limits P / F 1.0 1.017 101.7 80 - 120 Pass 1.0 1.095 109.5 80 - 120 Pass 1.0 1.191 119.1 80 - 120 Pass 1.0 1.078 107.8 80 - 120 Pass

Comments:					
			 	 _	

CARBAMATE PESTICIDES LABORATORY FORTIFIED BLANK

Tech: CM

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

unknown

Acq. File:

A090598

Contract: BAA 97-044

Task: Case: 4A

531.1

Data Directory: Q\A090598

Project:

IDEM / Pesticide Monitoring Network

Supelcosil LC-18-DB 15cm x 4.6mm Method:

n/a

Initial Cali File: Q\A090598 Instrument ID: HPLC - Q

Column:

LFB Soln Lot#: Mix 1: L-0804-090598

Mix 2:

Mix 3:

LFB Data File: Q0905009

Environmental Health Laboratories

All concentrations are in ug/L

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	a
Aldicarb	10.0	10.297	103.0	70 - 130	Pass	
Carbofuran	10.0	11.332	113.3	70 - 130	Pass	
Methiocarb	10.0	11.245	112.4	70 - 130	Pass	
Methomyl	10.0	11.385	113.9	70 - 130	Pass	
Oxamyl	10.0	11.445	114.4	70 - 130	Pass	
		_				

nments:	 		 	
	 	·	 _	
	 	·	 	
		<u>-</u>		

Q = A flag or qualifier indicating possible cause(s) for an out of range or failed result.

Page	1	of	1	
------	---	----	---	--

CARBAMATE PESTICIDES DATA SHEET

4A

531.1

Tech: CM

Lab Name: Environmental Health Laboratories

Q0905010

Lab ID: unknown Acq. File:

Date: 09/10/98

Contract: BAA 97-044

Task:

A090598

Project:

Data Directory: Q\A090598

IDEM / Pesticide Monitoring Network Case:

n/a

Initial Cali File: Q\A090598

Column:

Supelcosil LC-18-DB 15cm x 4.6mm | Method:

Instrument ID: HPLC - Q

Matrix Code:

RW

Smpl Vol: 500 ul

Date Received: n/a

Data File/Smpl ID:

Dil. Factor: 1

Date Analyzed: 09/05/98

Data File/Dupl ID:

Dupl Type:

Contm. Level:

Sample Number/Description: Laboratory Method Blank

			Sample	
CAS Number	Compound	Con	centration	Units
116-06-3	Aldicarb	<	0.5	ug/L
1563-66-2	Carbofuran	<	0.9	ug/L
2032-65-7	Methiocarb	<	1.0	ug/L
16752-77-5	Methomyl	<	0.5	ug/L
23135-22-0	Oxamyl	<	1.0	ug/L
		1		

Duplicate		
Concentration	Units	Q
		_
		_
		_
	_	

ments:	 				
	 _		<u> </u>		
	 				
				_	

	Page	1	of
--	------	---	----

Environmental Health Laboratories

CARBAMATE PESTICIDES DATA SHEET

Tech: CM

DATA SHEET Date: 09/10/98

Acq. File: A090598 Lab Name: Environmental Health Laboratories Lab ID: unknown Contract: BAA 97-044 Task: 4A Data Directory: Q\A090598 Project: IDEM / Pesticide Monitoring Network Case: n/a Initial Cali File: Q\A090598 Column: Supelcosil LC-18-DB 15cm x 4.6mm | Method: 531.1 Instrument ID: HPLC - Q Matrix Code: GW Date Received: 08/19/98 Smpl Vol: 500 ul Data File/Smpl ID: Q0905011 Dil. Factor: 1 Date Analyzed: 09/05/98

Data File/Dupl ID: Dupl Type: Contm. Level: L

Sample Number/Description: DK 12129 / EHL 346616

CAS Number	Compound	(1)	iample centration	Unite
116-06-3	Aldicarb	<	0.5	ug/L
1563-66-2	Carbofuran	 	0.9	ug/L
2032-65-7	Methiocarb	 	1.0	ug/L
16752-77-5	Methomyl	<	0.5	ug/L
23135-22-0	Oxamyl	<	1.0	ug/L
		-		
		1		
		-		
			•	
		<u> </u>		

75555550°°° 05555650°° 0555556°° 0555556°	******************	855555555555555555555555555555555555555
Duplicate		
	(2003)2000000000000000000000000000000000	

Concentration	A Market And	
Conceilianon		

	I	
	i	
· · · · · · · · · · · · · · · · · · ·		
	I	
	I	
	[
	1	
		· · · · · · · · · · · · · · · · · · ·
	I	
	1	
	1	
-		
	I	
	I	
		l .
	ı	
	I :	
	1	
	l	
	I	
	I	

 _			
 	-		
 	-		
 <u> </u>	.		
 -		_	

CARBAMATE PESTICIDES QUALITY CONTROL SAMPLE

Tech: CM

Date: 09/10/98

Lab Name: Environmental Health Laboratories Lab ID:

unknown

Acq. File:

Contract:

BAA 97-044

Task:

A090598

Project:

Case:

Data Directory: Q\A090598

Column:

IDEM / Pesticide Monitoring Network Supelcosil LC-18-DB 15cm x 4.6mm Method:

4A n/a 531.1

Initial Cali File: Q\A090598 Instrument ID: HPLC - Q

QCS Soln Lot#: Mix 1: 076-319-121097

Mix 2:

Mix 3:

QCS Data File: Q0905040

Environmental Health Laboratories

	Target	Observed	Percent	Acceptance		
Compound	Conc	Conc	Recovery	Limits	P/F	O
Aldicarb	10.0	8.110	81.1	70 - 130	Pass	
Carbofuran	10.0	9.622	96.2	70 - 130	Pass	
Methiocarb	10.0	9.311	93.1	70 - 130	Pass	
Methomyl	10.0	9.160	91.6	70 - 130	Pass	
Oxamyl	10.0	9.034	90.3	70 - 130	Pass	
-						
-				-		
			_			
-						
				_		

omments:				
	 _		·	
	 	 <u> </u>		

Page 1 of 1	of 1		CARB,	CARBAMATE PESTICIDES	ODES A SIIMMARY			Tech: CM	Tech: CM Date: 09/10/98
								!	
Lab Name:		Environmental Health Laboratories	Lab ID:	unknown		Acq. File:	A090598		
Contract:		BAA 97-044	Task:	4A		Data Directory:	Q\A090598		
Project:		IDEM / Pesticide Monitoring Network	Case:	n/a		Initial Cali File:	Q\A090598		
Column:		Supelcosil LC-18-DB 15cm x 4.6mm ID	Method:	531.1		Instrument ID:	HPLC - Q		
IS Sol	아#								
		¥	15 Hour Co Chandra	1S1 Area	26:06 RT	IS2 Area	IS2 RT		
		## T	COC Libber Level	314283	26:36				
			CCC Lower Littiff	169229	25:36				
	-		Data F#a /						Conten.
<u> - </u>	l aborato	aboratory Fortified Blank	00905009	238080	26.07	1		RW	
2	Laborato	Laboratory Method Blank	Q0905010	247521	26:06			RW	
З	DK 1212	DK 12129 / EHL 346616	Q0905011	257218	26:07			GW	١
4	Quality (Quality Control Sample	Q0905040	243453	26:04			RW	
G									
စ									
7									
œ									
9									
5									
==									
12									
13									
14									
5									
6									
17					-				
<u></u>									
19									
20									
1S1 = 4-B	4-Bromo	IS1 = 4-Bromo-3,5-dimethylphenyl n-methylcarbamate	CCC Upper	/ Lower Limit: Ar r qualifier indicati	CCC Upper / Lower Limit: Area: CCC std IS area +/- 30%;	ea +/- 30%;	RT: CCC std IS RT +/- 30 seconds	+/- 30 secor	sbr
				<u>-</u> : :	0				
Comn	Comments:		:						
[]	0.00	First Children - Today - Edder Alexande							

CARBAMATE PESTICIDES INITIAL CALIBRATION

Tech: CM

Date: 09/10/98

Lab Name: Environmental Health Laboratories

Lab ID: unknown

Acq. File:

A090598

Contract:

BAA 95 - 22

4A Task:

Data Directory:

Q\A090598

HPLC - Q

Project:

IDEM / Pesticide Monitoring Network Case:

n/a

Initial Cali File:

Q\A090598

Column:

Supelcosil LC-18-DB 15cm x 4.6mm Method: 531.1

Instrument ID:

IC Soln Lot#: Mix 1: L-0804-090598			Mix 2: Mix 3:							
Data File / Sample ID:	Q0905003	Q0905004	Q0905005	Q0905006	Q0905007					
Concentration:	1.0 ug/L	2.0 ug/L	5.0 ug/L	10 ug/L	25 ug/L			Avg	%	
Compound	Rf	Rf	Rf	Rf	Rf			Rf	RSD	Q
Aldicarb	0.269	0.273	0.339	0.331	0.339			0.310	11.6	
Carbofuran	0.384	0.443	0.467	0.471	0.479			0.449	8.6	
Methiocarb	0.686	0.768	0.878	0.851	0.846			0.806	9.7	
Methomyl	0.190	0.193	0.246	0.243	0.242	_		0.223	12.9	
Oxamyl	0.287	0.309	0.382	0.372	0.373			0.345	12.6	
				_						
			_							
					_					
								_	_	

Avg RF = Average result factor

Max %RSD = 20%

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

Comments:											
_					-		_				
-		_		_							
-	_										
- -					_		_		_		
•											
-			_		-					 	
-											
-						·				 	
-					_			,			
-									-	 	

METHOD 531 1- CARBAMATES	
DETERMINATION OF METHOD DETECTION LIMITS	Page 1 of 1

Tech: TML Date: 10/25/97

Project: Matrix Code: Column: Extraction Technique: Lab Name: Filtration ₽¥ Routine MDL Environmental Health Laboratories Supelco C-18DB 150 x 4.6 mm Disk: Method: Cartridge: n/a Extract.Vol: n/a LSE Matrix: n/a n/a 531.1 Data Directory: Acq. File: Instrument ID: Extraction Technician: TML Initial Cali Data: A101697 HLPC-Q Q\A101597 Q\A101697 Q\A101997 Q\A102497 A101997 A102497

531.1	531.1	531.1	531.1	531.1	Method		
23135-22-0 Oxamy	16752-77-5 Methomy	2032-65-7 Methiocark	1563-66-2	116-06-3	CAS#		
Oxamyl	Methomyl	Methiocarb	1563-66-2 Carbofuran	Aldicarb	Parameter		
1.00	1.00	1.00	1.00	1.00	Target Conc. (ugfL)	Analysis Date	Data File
0.891	1.115	1.108	1.050	0.841	Rep - 1	10/17/97	Q1016028 Q1016029 Q1016030 Q1021033 Q1021034 Q1021035 Q1024037
0.936	0.969	0.977	0.830	0.821	Rep - 2	10/17/97 10/17/97	Q1016029
0.830	0.972	1.085	1.056	0.736	Observe Rep - 3 F	10/17/97	Q1016030
0.848	1.078	1.075	0.981	0.924	rved Recovery Rep - 4 H	10/22/97	Q1021033
0.967	0.965	1.084	0.865	0.976	ary Hap-5	10/22/97	Q1021034
0.955	1.037	1.047	0.936	0.973	Rep - 6	10/22/97 10/24/97	Q1021035
0.871	0.946	0.996	0.983	0.841	Hep-7	10/24/97	Q1024037
0.0538	0.065	0.049	0.086	0.088	Std. Deviation		
0.169	0.205	0.154	0.272	0.278	Catc		
ug/L	ug/L	ug/L	ug/L	ug/L	G		

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

COMMENTS:

LSE = Liquid / solid extraction; LLE = Liquid / Liquid extraction LSE Matrix = C8, C18, SDVB, Biorex-5, AG-1X-8